{"title":"Normalizer quotients of symmetric groups and inner holomorphs","authors":"Alexei Entin , Cindy (Sin Yi) Tsang","doi":"10.1016/j.jpaa.2024.107839","DOIUrl":null,"url":null,"abstract":"<div><div>We show that every finite group <em>T</em> is isomorphic to a normalizer quotient <span><math><msub><mrow><mi>N</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>/</mo><mi>H</mi></math></span> for some <em>n</em> and a subgroup <span><math><mi>H</mi><mo>≤</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We show that this holds for all large enough <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> and also with <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> replaced by <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The two main ingredients in the proof are a recent construction due to Cornulier and Sambale of a finite group <em>G</em> with <span><math><mrow><mi>Out</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>≅</mo><mi>T</mi></math></span> (for any given finite group <em>T</em>) and the determination of the normalizer in <span><math><mrow><mi>Sym</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of the inner holomorph <span><math><mrow><mi>InHol</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mrow><mi>Sym</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for any centerless indecomposable finite group <em>G</em>, which may be of independent interest.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107839"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002366","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that every finite group T is isomorphic to a normalizer quotient for some n and a subgroup . We show that this holds for all large enough and also with replaced by . The two main ingredients in the proof are a recent construction due to Cornulier and Sambale of a finite group G with (for any given finite group T) and the determination of the normalizer in of the inner holomorph for any centerless indecomposable finite group G, which may be of independent interest.
我们证明,对于某个 n 和一个子群 H≤Sn 而言,每个有限群 T 都与一个归一化商 NSn(H)/H 同构。我们证明,对于所有足够大的 n≥n0(T),以及用 An 代替 Sn 时,这一点都成立。证明的两个主要因素是 Cornulier 和 Sambale 最近构建的一个有限群 G 的 Out(G)≅T(对于任意给定的有限群 T),以及对于任意无中心不可分解有限群 G 的内全形 InHol(G)≤Sym(G)在 Sym(G)中的归一化子的确定,这两个因素可能会引起独立的兴趣。
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.