Normalizer quotients of symmetric groups and inner holomorphs

IF 0.7 2区 数学 Q2 MATHEMATICS
Alexei Entin , Cindy (Sin Yi) Tsang
{"title":"Normalizer quotients of symmetric groups and inner holomorphs","authors":"Alexei Entin ,&nbsp;Cindy (Sin Yi) Tsang","doi":"10.1016/j.jpaa.2024.107839","DOIUrl":null,"url":null,"abstract":"<div><div>We show that every finite group <em>T</em> is isomorphic to a normalizer quotient <span><math><msub><mrow><mi>N</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>/</mo><mi>H</mi></math></span> for some <em>n</em> and a subgroup <span><math><mi>H</mi><mo>≤</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We show that this holds for all large enough <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> and also with <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> replaced by <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The two main ingredients in the proof are a recent construction due to Cornulier and Sambale of a finite group <em>G</em> with <span><math><mrow><mi>Out</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>≅</mo><mi>T</mi></math></span> (for any given finite group <em>T</em>) and the determination of the normalizer in <span><math><mrow><mi>Sym</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of the inner holomorph <span><math><mrow><mi>InHol</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mrow><mi>Sym</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for any centerless indecomposable finite group <em>G</em>, which may be of independent interest.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107839"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002366","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that every finite group T is isomorphic to a normalizer quotient NSn(H)/H for some n and a subgroup HSn. We show that this holds for all large enough nn0(T) and also with Sn replaced by An. The two main ingredients in the proof are a recent construction due to Cornulier and Sambale of a finite group G with Out(G)T (for any given finite group T) and the determination of the normalizer in Sym(G) of the inner holomorph InHol(G)Sym(G) for any centerless indecomposable finite group G, which may be of independent interest.
对称群的归一化商与内全形
我们证明,对于某个 n 和一个子群 H≤Sn 而言,每个有限群 T 都与一个归一化商 NSn(H)/H 同构。我们证明,对于所有足够大的 n≥n0(T),以及用 An 代替 Sn 时,这一点都成立。证明的两个主要因素是 Cornulier 和 Sambale 最近构建的一个有限群 G 的 Out(G)≅T(对于任意给定的有限群 T),以及对于任意无中心不可分解有限群 G 的内全形 InHol(G)≤Sym(G)在 Sym(G)中的归一化子的确定,这两个因素可能会引起独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信