Reservoir evaluation method based on explainable machine learning with small samples

Haojiang Xi , Zhifeng Luo , Yue Guo
{"title":"Reservoir evaluation method based on explainable machine learning with small samples","authors":"Haojiang Xi ,&nbsp;Zhifeng Luo ,&nbsp;Yue Guo","doi":"10.1016/j.uncres.2024.100128","DOIUrl":null,"url":null,"abstract":"<div><div>Reservoir classification and evaluation of fractured gas reservoirs are essential for optimizing development strategies and enhancing oil and gas recovery rates. In this study, we utilized geological and engineering parameters to construct new feature dimensions and applied the K-means clustering algorithm to classify reservoirs into three categories based on unobstructed flow rates. We developed a novel machine learning framework that integrates Explainable Artificial Intelligence (XAI), Synthetic Minority Over-sampling Technique (SMOTE), and Stacking models, addressing class imbalance in small sample datasets. This framework achieved a classification accuracy of 92 %, demonstrating significant improvements over traditional methods. Through global and local interpretability analysis using SHAP values, we identified the critical features influencing the model's predictions, enhancing transparency and practicality. Using data from the Bozi-Dabei Block in the Tarim Basin, we validated the accuracy and applicability of our approach. This framework not only deepens the understanding of complex reservoir characteristics but also optimizes reservoir classification accuracy, providing robust technical support for the efficient development of unconventional oil and gas resources.</div></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"5 ","pages":"Article 100128"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519024000566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reservoir classification and evaluation of fractured gas reservoirs are essential for optimizing development strategies and enhancing oil and gas recovery rates. In this study, we utilized geological and engineering parameters to construct new feature dimensions and applied the K-means clustering algorithm to classify reservoirs into three categories based on unobstructed flow rates. We developed a novel machine learning framework that integrates Explainable Artificial Intelligence (XAI), Synthetic Minority Over-sampling Technique (SMOTE), and Stacking models, addressing class imbalance in small sample datasets. This framework achieved a classification accuracy of 92 %, demonstrating significant improvements over traditional methods. Through global and local interpretability analysis using SHAP values, we identified the critical features influencing the model's predictions, enhancing transparency and practicality. Using data from the Bozi-Dabei Block in the Tarim Basin, we validated the accuracy and applicability of our approach. This framework not only deepens the understanding of complex reservoir characteristics but also optimizes reservoir classification accuracy, providing robust technical support for the efficient development of unconventional oil and gas resources.

Abstract Image

基于小样本可解释机器学习的储层评价方法
裂缝气藏的储层分类和评价对于优化开发战略和提高油气采收率至关重要。在这项研究中,我们利用地质和工程参数构建了新的特征维度,并应用 K-means 聚类算法,根据畅通流量将储层分为三类。我们开发了一种新型机器学习框架,该框架集成了可解释人工智能(XAI)、合成少数群体过度采样技术(SMOTE)和堆叠模型,解决了小样本数据集中的类不平衡问题。该框架的分类准确率达到 92%,与传统方法相比有显著提高。通过使用 SHAP 值进行全局和局部可解释性分析,我们确定了影响模型预测的关键特征,提高了透明度和实用性。利用塔里木盆地博孜-达贝区块的数据,我们验证了我们方法的准确性和适用性。该框架不仅加深了对复杂储层特征的理解,还优化了储层分类的准确性,为高效开发非常规油气资源提供了强有力的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信