Waves in Earth's core and geomagnetic field forecast

IF 2.4 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
N. Gillet , F. Dall'Asta , P.-O. Amblard , R. Claveau , J. Aubert
{"title":"Waves in Earth's core and geomagnetic field forecast","authors":"N. Gillet ,&nbsp;F. Dall'Asta ,&nbsp;P.-O. Amblard ,&nbsp;R. Claveau ,&nbsp;J. Aubert","doi":"10.1016/j.pepi.2024.107284","DOIUrl":null,"url":null,"abstract":"<div><div>We use advanced numerical geodynamo series to derive a reduced stochastic model of the dynamics at the surface of Earth's core. Considering order 3 autoregressive (AR-3) processes allows to replicate the simulated spatiotemporal spectrum over a broad range of time-scales, spanning millennia to a fraction of year, including the cut-off found for periods shorter than approximately 2 years and associated with magnetic dissipation. We show how to derive such a forward model from a variety of input simulation series, and present its implementation into the pygeodyn data assimilation algorithm, based on a sequential ensemble method. The updated scheme is applied to perform magnetic field hindcasts and core flow reanalyses. For all observable length-scales, the rate of change of the observed magnetic field is most of the time accounted for within the spread of the forward model trajectories. AR-3 predictions on average supersede by about 35 % linear extrapolations on short (2 yr) time-scales, reducing high-frequency spurious variations in reanalysed flow motions. This improvement is reduced to <span><math><mo>≈</mo><mn>10</mn><mo>%</mo></math></span> for 5 yr increments, with a large variability from one epoch to the other depending on the overall curvature of the magnetic field evolution. We perform a reanalysis over the period 1880–2023 covered by observatory and satellite records. We find enhanced kinetic energy in three period ranges around 12.5, 6.5 and 3.5 years. At all three periods, fluid motions share geometrical properties compatible with quasi-geostrophic magneto-Coriolis waves: equatorial symmetry, larger amplitude near the equator, flow dominated by low azimuthal wave number and modulated in longitude, phase speed much faster than the fluid velocity and decreasing with the period. At 6.5 yr period we trace back to the mid-1990's the patterns previously detected from satellite data. We also find in the 1960–70's a similar wave-train, possibly in link with the 1969 geomagnetic jerk. The AR-3 model, in conjunction with early satellite records, likely helps isolate such coherent features on interannual time-scales. Similar wave-like motions also show up at 3.5 yr period around 1970 and during the past decades. At periods around 12.5 yr we detect recurrent patterns starting as far back as 1920, and modulated over decadal time-scales. Our results show growing evidence for core dynamics governed by the presence of hydro-magnetic waves over a wide range of periods. This may allow deterministic and/or empirical descriptions of the signal that may help sound deep Earth's properties, and improve predictions of the magnetic field evolution.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"357 ","pages":"Article 107284"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124001420","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We use advanced numerical geodynamo series to derive a reduced stochastic model of the dynamics at the surface of Earth's core. Considering order 3 autoregressive (AR-3) processes allows to replicate the simulated spatiotemporal spectrum over a broad range of time-scales, spanning millennia to a fraction of year, including the cut-off found for periods shorter than approximately 2 years and associated with magnetic dissipation. We show how to derive such a forward model from a variety of input simulation series, and present its implementation into the pygeodyn data assimilation algorithm, based on a sequential ensemble method. The updated scheme is applied to perform magnetic field hindcasts and core flow reanalyses. For all observable length-scales, the rate of change of the observed magnetic field is most of the time accounted for within the spread of the forward model trajectories. AR-3 predictions on average supersede by about 35 % linear extrapolations on short (2 yr) time-scales, reducing high-frequency spurious variations in reanalysed flow motions. This improvement is reduced to 10% for 5 yr increments, with a large variability from one epoch to the other depending on the overall curvature of the magnetic field evolution. We perform a reanalysis over the period 1880–2023 covered by observatory and satellite records. We find enhanced kinetic energy in three period ranges around 12.5, 6.5 and 3.5 years. At all three periods, fluid motions share geometrical properties compatible with quasi-geostrophic magneto-Coriolis waves: equatorial symmetry, larger amplitude near the equator, flow dominated by low azimuthal wave number and modulated in longitude, phase speed much faster than the fluid velocity and decreasing with the period. At 6.5 yr period we trace back to the mid-1990's the patterns previously detected from satellite data. We also find in the 1960–70's a similar wave-train, possibly in link with the 1969 geomagnetic jerk. The AR-3 model, in conjunction with early satellite records, likely helps isolate such coherent features on interannual time-scales. Similar wave-like motions also show up at 3.5 yr period around 1970 and during the past decades. At periods around 12.5 yr we detect recurrent patterns starting as far back as 1920, and modulated over decadal time-scales. Our results show growing evidence for core dynamics governed by the presence of hydro-magnetic waves over a wide range of periods. This may allow deterministic and/or empirical descriptions of the signal that may help sound deep Earth's properties, and improve predictions of the magnetic field evolution.
地心波和地磁场预报
我们利用先进的地球动力数值系列,推导出了地核表面动态的简化随机模型。考虑到 3 阶自回归(AR-3)过程,我们可以在广泛的时间尺度范围内复制模拟的时空频谱,时间跨度从千年到几分之一年不等,包括发现的短于约 2 年且与磁耗散相关的截断时间。我们展示了如何从各种输入模拟序列中推导出这样一个前向模型,并介绍了在基于序列集合方法的 pygeodyn 数据同化算法中的实施情况。更新后的方案被应用于磁场后报和核心流再分析。在所有可观测的长度尺度上,观测到的磁场变化率在大多数情况下都能在前向模式轨迹的传播范围内得到解释。在短(2 年)时间尺度上,AR-3 预测结果平均比线性外推结果高出约 35%,从而减少了重新分析的流动运动中的高频虚假变化。这一改进在 5 年增量上减小到≈10%,不同时间段的变化很大,这取决于磁场演变的整体曲率。我们对天文台和卫星记录所覆盖的 1880-2023 年期间进行了重新分析。我们发现在 12.5 年、6.5 年和 3.5 年三个周期范围内动能增强。在这三个周期中,流体运动都具有与准地转磁-科里奥利波相一致的几何特性:赤道对称,赤道附近振幅较大,流动以低方位角波数为主,并在经度上进行调制,相位速度比流体速度快得多,并随周期而减小。在 6.5 年周期上,我们追溯到 1990 年代中期以前从卫星数据中探测到的模式。我们还发现 1960-70 年代也有类似的波列,可能与 1969 年的地磁抽搐有关。AR-3 模型与早期的卫星记录相结合,可能有助于在年际时间尺度上分离出这种连贯的特征。类似的波浪式运动也出现在 1970 年前后的 3.5 年周期和过去几十年中。在 12.5 年左右的周期,我们发现了早在 1920 年就开始出现的反复模式,并在十年时间尺度上进行了调制。我们的研究结果表明,越来越多的证据表明,在广泛的周期范围内,核心动力学受水磁波的支配。这可能允许对信号进行确定性和/或经验性描述,从而有助于探测地球深部的特性,并改进对磁场演变的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Earth and Planetary Interiors
Physics of the Earth and Planetary Interiors 地学天文-地球化学与地球物理
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
18.5 weeks
期刊介绍: Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors. Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信