Conch shell derived bio-carbon/Paraffin as novel composite phase change material with enhanced thermal energy storage properties for photovoltaic module cooling systems

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Prabhu B , Arunkumar T , Premkumar Subramanian , Nantheeswaran Periyappan , Abdullah Alarifi , Mariappan Mariappan
{"title":"Conch shell derived bio-carbon/Paraffin as novel composite phase change material with enhanced thermal energy storage properties for photovoltaic module cooling systems","authors":"Prabhu B ,&nbsp;Arunkumar T ,&nbsp;Premkumar Subramanian ,&nbsp;Nantheeswaran Periyappan ,&nbsp;Abdullah Alarifi ,&nbsp;Mariappan Mariappan","doi":"10.1016/j.solmat.2024.113306","DOIUrl":null,"url":null,"abstract":"<div><div>Phase change materials (PCM)-based photovoltaic module cooling systems (PVCS) are essential in lowering module temperatures and improving overall efficiency. The use of conch shell-based composite PCM in PVCS for improved thermal management has not been reported. This study uses thermally conductive calcium compounds enriched aqua bio-mass based carbonized conch shell porous carbon (CSC) as an organic form stabilizer to produce a composite Paraffin PCM (CPN) and explores its thermal energy storage capabilities for PVCS. The effect of carbonization temperature on the development of CSC frameworks is investigated by assessing morphology, graphitization degree, crystalline nature, functional elements, and surface characteristics. The composite CPN samples are then produced using a vacuum impregnation process with different mass proportions (43:57, 50:50, 57:43, and 64:36) of Paraffin PCM and CSC form stabilizer. Non-carbonized conch shell powder based composite PCM samples are produced using the former process and use as reference samples. The leakage assessment study demonstrates that the composite CPN with a proportion of 64:36 offers better anti-leak tendency before and after thermal cycling. The composite CPN sample is further evaluated for thermal conductivity, phase transition properties, thermal stability, and chemical stability. Experimentation on phase change rate assessment of the composite CPN demonstrates its capability for PVCS. The cycled composite CPN sample possesses a better loading efficiency (90.71 %), enhanced thermal conductivity from 0.214 to 0.433 W/mK, improved thermal stability up to 204<sup>o</sup>C, melting/freezing energy density (206.3/191.2 J/g), and thermal storage capability (96.82 %), making it a viable anti-leak material for improving PVCS operational performance.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"281 ","pages":"Article 113306"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824006184","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Phase change materials (PCM)-based photovoltaic module cooling systems (PVCS) are essential in lowering module temperatures and improving overall efficiency. The use of conch shell-based composite PCM in PVCS for improved thermal management has not been reported. This study uses thermally conductive calcium compounds enriched aqua bio-mass based carbonized conch shell porous carbon (CSC) as an organic form stabilizer to produce a composite Paraffin PCM (CPN) and explores its thermal energy storage capabilities for PVCS. The effect of carbonization temperature on the development of CSC frameworks is investigated by assessing morphology, graphitization degree, crystalline nature, functional elements, and surface characteristics. The composite CPN samples are then produced using a vacuum impregnation process with different mass proportions (43:57, 50:50, 57:43, and 64:36) of Paraffin PCM and CSC form stabilizer. Non-carbonized conch shell powder based composite PCM samples are produced using the former process and use as reference samples. The leakage assessment study demonstrates that the composite CPN with a proportion of 64:36 offers better anti-leak tendency before and after thermal cycling. The composite CPN sample is further evaluated for thermal conductivity, phase transition properties, thermal stability, and chemical stability. Experimentation on phase change rate assessment of the composite CPN demonstrates its capability for PVCS. The cycled composite CPN sample possesses a better loading efficiency (90.71 %), enhanced thermal conductivity from 0.214 to 0.433 W/mK, improved thermal stability up to 204oC, melting/freezing energy density (206.3/191.2 J/g), and thermal storage capability (96.82 %), making it a viable anti-leak material for improving PVCS operational performance.
海螺壳衍生生物碳/石蜡作为新型复合相变材料,可增强光伏组件冷却系统的热能储存性能
基于相变材料(PCM)的光伏组件冷却系统(PVCS)对于降低组件温度和提高整体效率至关重要。在 PVCS 中使用以海螺壳为基础的复合 PCM 以改善热管理的情况尚未见报道。本研究使用富含导热钙化合物的水生生物质碳化海螺壳多孔碳(CSC)作为有机形态稳定剂,生产出一种复合石蜡 PCM(CPN),并探索其在 PVCS 中的热能存储能力。通过评估形态、石墨化程度、结晶性质、功能元素和表面特征,研究了碳化温度对 CSC 框架发展的影响。然后使用真空浸渍工艺,按照石蜡 PCM 和 CSC 形式稳定剂的不同质量比例(43:57、50:50、57:43 和 64:36),制备出复合 CPN 样品。使用前一种工艺制作的非碳化海螺壳粉基复合 PCM 样品用作参考样品。泄漏评估研究表明,在热循环前后,比例为 64:36 的复合 CPN 具有更好的防泄漏性能。复合 CPN 样品的热导率、相变特性、热稳定性和化学稳定性也得到了进一步评估。复合 CPN 的相变速率评估实验证明了其在聚氯乙烯合成中的应用能力。循环后的复合 CPN 样品具有更高的装载效率(90.71%),热导率从 0.214 W/mK 提高到 0.433 W/mK,热稳定性提高到 204oC,熔化/冷冻能量密度(206.3/191.2 J/g)和热存储能力(96.82%),使其成为提高聚氯乙烯制冷系统运行性能的一种可行的防泄漏材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信