Madhan K. Arulanandam , Jeronimo Buencuerpo , Myles A. Steiner , Leah Y. Kuritzky , Alexandra R. Young , Eric J. Tervo , Emmett E. Perl , Brendan M. Kayes , Justin A. Briggs , Richard R. King
{"title":"Patterned dielectric back contact design for GaAs thermophotovoltaic devices","authors":"Madhan K. Arulanandam , Jeronimo Buencuerpo , Myles A. Steiner , Leah Y. Kuritzky , Alexandra R. Young , Eric J. Tervo , Emmett E. Perl , Brendan M. Kayes , Justin A. Briggs , Richard R. King","doi":"10.1016/j.solmat.2024.113285","DOIUrl":null,"url":null,"abstract":"<div><div>—Patterned-dielectric back contact structures in optoelectronic devices are designed to boost the reflectance of light from the device back surface while retaining a low-resistance pathway for electrical conductance. Their reduced light absorption at near- and sub-bandgap photon energies leads to improved luminescence in light-emitting diodes, greater photon recycling, voltage, and efficiency in photovoltaic cells, and greater recuperation of unabsorbed sub-bandgap light in thermophotovoltaic (TPV) systems. However, diffraction from the patterned features can deflect incident light in propagation directions that lead to light trapping and parasitic absorption in the cell. In this article, we use rigorous coupled-wave analysis (RCWA) to study three-dimensional diffractive scattering of electromagnetic waves by periodic metal point-contact gratings on 1.42-eV GaAs TPV cells, to analyze their effect on unwanted sub-bandgap absorption in order to achieve higher TPV system efficiency. Solutions of Maxwell's equations calculated using RCWA are compared to measured sub-bandgap reflectance in experimental GaAs TPV devices with varying metal point-contact diameters and spacing. Modeling and experiments indicate decreased total reflectance due to these diffractive effects for a small point contact diameter of 1 μm, and this effect is much stronger at higher contact coverage fractions.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"281 ","pages":"Article 113285"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702482400597X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
—Patterned-dielectric back contact structures in optoelectronic devices are designed to boost the reflectance of light from the device back surface while retaining a low-resistance pathway for electrical conductance. Their reduced light absorption at near- and sub-bandgap photon energies leads to improved luminescence in light-emitting diodes, greater photon recycling, voltage, and efficiency in photovoltaic cells, and greater recuperation of unabsorbed sub-bandgap light in thermophotovoltaic (TPV) systems. However, diffraction from the patterned features can deflect incident light in propagation directions that lead to light trapping and parasitic absorption in the cell. In this article, we use rigorous coupled-wave analysis (RCWA) to study three-dimensional diffractive scattering of electromagnetic waves by periodic metal point-contact gratings on 1.42-eV GaAs TPV cells, to analyze their effect on unwanted sub-bandgap absorption in order to achieve higher TPV system efficiency. Solutions of Maxwell's equations calculated using RCWA are compared to measured sub-bandgap reflectance in experimental GaAs TPV devices with varying metal point-contact diameters and spacing. Modeling and experiments indicate decreased total reflectance due to these diffractive effects for a small point contact diameter of 1 μm, and this effect is much stronger at higher contact coverage fractions.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.