Buckling instability of graphyne nanosheets under local indentation

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiazhen Zhang , Peijian Chen , Juan Peng , Hao Liu , Guangjian Peng , Yingying Zhang
{"title":"Buckling instability of graphyne nanosheets under local indentation","authors":"Jiazhen Zhang ,&nbsp;Peijian Chen ,&nbsp;Juan Peng ,&nbsp;Hao Liu ,&nbsp;Guangjian Peng ,&nbsp;Yingying Zhang","doi":"10.1016/j.mechmat.2024.105206","DOIUrl":null,"url":null,"abstract":"<div><div>As a novel two-dimensional material, a well understanding of mechanical properties of graphyne under various loading conditions is essential for its blooming applications. However, the buckling mechanism of graphyne under local loads is still unclear, which hinders the development of its related nanodevices. In this work, the buckling behavior of graphyne under local indentation is studied by molecular dynamics simulation and theoretical analysis. It is found that the theoretical prediction of the critical indentation depth for buckling of graphyne agrees well with that from molecular dynamics simulation. The buckling morphology lies in the intermediate region between the contact region and the outer boundary. The critical indentation depth and the buckling morphology can be tuned by adopting various geometric and material parameters. The results should be helpful for not only guiding various applications of graphyne, but also improving the development of nanomechanics.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"200 ","pages":"Article 105206"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624002989","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As a novel two-dimensional material, a well understanding of mechanical properties of graphyne under various loading conditions is essential for its blooming applications. However, the buckling mechanism of graphyne under local loads is still unclear, which hinders the development of its related nanodevices. In this work, the buckling behavior of graphyne under local indentation is studied by molecular dynamics simulation and theoretical analysis. It is found that the theoretical prediction of the critical indentation depth for buckling of graphyne agrees well with that from molecular dynamics simulation. The buckling morphology lies in the intermediate region between the contact region and the outer boundary. The critical indentation depth and the buckling morphology can be tuned by adopting various geometric and material parameters. The results should be helpful for not only guiding various applications of graphyne, but also improving the development of nanomechanics.
局部压痕作用下石墨纳米片的屈曲不稳定性
作为一种新型二维材料,充分了解石墨在各种载荷条件下的力学性能对其广泛应用至关重要。然而,石墨烯在局部载荷作用下的屈曲机理尚不清楚,这阻碍了其相关纳米器件的开发。本文通过分子动力学模拟和理论分析研究了石墨烯在局部压痕作用下的屈曲行为。研究发现,理论预测的石墨烯屈曲临界压痕深度与分子动力学模拟的结果十分吻合。屈曲形态位于接触区和外部边界之间的中间区域。临界压痕深度和屈曲形态可通过采用不同的几何和材料参数进行调整。这些结果不仅有助于指导石墨烯的各种应用,也有助于改进纳米力学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信