Forecasting macroeconomic tail risk in real time: Do textual data add value?

IF 6.9 2区 经济学 Q1 ECONOMICS
Philipp Adämmer , Jan Prüser , Rainer A. Schüssler
{"title":"Forecasting macroeconomic tail risk in real time: Do textual data add value?","authors":"Philipp Adämmer ,&nbsp;Jan Prüser ,&nbsp;Rainer A. Schüssler","doi":"10.1016/j.ijforecast.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><div>We examine the incremental value of news-based data relative to the FRED-MD economic indicators for quantile predictions of employment, output, inflation, and consumer sentiment in a high-dimensional setting. Our results suggest that news data contain valuable information not captured by a large set of economic indicators. We provide empirical evidence that this information can be exploited to improve tail risk predictions. The added value is largest when media coverage and sentiment are combined to compute text-based predictors. Methods that capture quantile-specific non-linearities produce superior forecasts to those with linear predictive relationships. The results are robust along different modeling choices.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 307-320"},"PeriodicalIF":6.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000463","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the incremental value of news-based data relative to the FRED-MD economic indicators for quantile predictions of employment, output, inflation, and consumer sentiment in a high-dimensional setting. Our results suggest that news data contain valuable information not captured by a large set of economic indicators. We provide empirical evidence that this information can be exploited to improve tail risk predictions. The added value is largest when media coverage and sentiment are combined to compute text-based predictors. Methods that capture quantile-specific non-linearities produce superior forecasts to those with linear predictive relationships. The results are robust along different modeling choices.
实时预测宏观经济尾部风险:文本数据会带来价值吗?
我们研究了在高维环境下,相对于 FRED-MD 经济指标,新闻数据在就业、产出、通胀和消费者情绪的量化预测方面的增量价值。我们的结果表明,新闻数据包含了大量经济指标无法捕捉到的有价值信息。我们提供的经验证据表明,可以利用这些信息来改进尾部风险预测。当媒体报道和情绪结合起来计算基于文本的预测因子时,附加值最大。与线性预测关系的方法相比,捕捉特定量级非线性的方法能产生更优越的预测结果。在不同的建模选择下,结果是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信