{"title":"Cross-temporal forecast reconciliation at digital platforms with machine learning","authors":"Jeroen Rombouts , Marie Ternes , Ines Wilms","doi":"10.1016/j.ijforecast.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>Platform businesses operate on a digital core, and their decision-making requires high-dimensional accurate forecast streams at different levels of cross-sectional (e.g., geographical regions) and temporal aggregation (e.g., minutes to days). It also necessitates coherent forecasts across all hierarchy levels to ensure aligned decision-making across different planning units such as pricing, product, controlling, and strategy. Given that platform data streams feature complex characteristics and interdependencies, we introduce a non-linear hierarchical forecast reconciliation method that produces cross-temporal reconciled forecasts in a direct and automated way through popular machine learning methods. The method is sufficiently fast to allow forecast-based high-frequency decision-making that platforms require. We empirically test our framework on unique, large-scale streaming datasets from a leading on-demand delivery platform in Europe and a bicycle-sharing system in New York City.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 321-344"},"PeriodicalIF":6.9000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000475","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Platform businesses operate on a digital core, and their decision-making requires high-dimensional accurate forecast streams at different levels of cross-sectional (e.g., geographical regions) and temporal aggregation (e.g., minutes to days). It also necessitates coherent forecasts across all hierarchy levels to ensure aligned decision-making across different planning units such as pricing, product, controlling, and strategy. Given that platform data streams feature complex characteristics and interdependencies, we introduce a non-linear hierarchical forecast reconciliation method that produces cross-temporal reconciled forecasts in a direct and automated way through popular machine learning methods. The method is sufficiently fast to allow forecast-based high-frequency decision-making that platforms require. We empirically test our framework on unique, large-scale streaming datasets from a leading on-demand delivery platform in Europe and a bicycle-sharing system in New York City.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.