Yao Wang , Nihui Zhang , Junwei Zhang, Ruijuan Yao, Jing He, Fang Wu
{"title":"Reinforced enzyme mineralized chitosan hydrogels with superior mechanical and osteogenic properties","authors":"Yao Wang , Nihui Zhang , Junwei Zhang, Ruijuan Yao, Jing He, Fang Wu","doi":"10.1016/j.carbpol.2024.123032","DOIUrl":null,"url":null,"abstract":"<div><div>As a natural cationic polymer material, the application of chitosan hydrogel for bone tissue engineering has been greatly limited due to its poor mechanical strength. Enzymatic mineralization has drawn increased attention to effectively improve the mechanical properties of hydrogels. In this study, carboxymethyl chitosan (CMCS) hydrogels cross-linked with different concentrations of genipin (2.5 %, 5 % and 10 %) were prepared and further mineralized through enzyme-induced biomimetic mineralization. The mechanical properties of the CMCS hydrogels were significantly increased as a result of mineralization, showing improvement of 1200–1500 % on storage moduli, and even exhibiting certain tensile behavior with the elongation rate of 30–35 %, likely due to the uniform formation and small size of mineralized products. Interestingly, the cationicity of chitosan also exerted an important modulation effect and the mineralization behavior and mechanical properties of mineralized hydrogels. In addition, the enzymatic mineralized hydrogels showed enhanced biocompatibility and osteogenic differentiation in-vitro, likely due to its superior mechanical properties and the introduction of calcium phosphate biominerals. In vivo experiments further suggest excellent bone-forming activity for the enzymatic mineralized hydrogels. Overall, tuning cationicity and enzymatic mineralization provide an effective approach for the preparation of chitosan hydrogels with superior mechanical and biological properties for bone tissue engineering application.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"349 ","pages":"Article 123032"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014486172401258X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
As a natural cationic polymer material, the application of chitosan hydrogel for bone tissue engineering has been greatly limited due to its poor mechanical strength. Enzymatic mineralization has drawn increased attention to effectively improve the mechanical properties of hydrogels. In this study, carboxymethyl chitosan (CMCS) hydrogels cross-linked with different concentrations of genipin (2.5 %, 5 % and 10 %) were prepared and further mineralized through enzyme-induced biomimetic mineralization. The mechanical properties of the CMCS hydrogels were significantly increased as a result of mineralization, showing improvement of 1200–1500 % on storage moduli, and even exhibiting certain tensile behavior with the elongation rate of 30–35 %, likely due to the uniform formation and small size of mineralized products. Interestingly, the cationicity of chitosan also exerted an important modulation effect and the mineralization behavior and mechanical properties of mineralized hydrogels. In addition, the enzymatic mineralized hydrogels showed enhanced biocompatibility and osteogenic differentiation in-vitro, likely due to its superior mechanical properties and the introduction of calcium phosphate biominerals. In vivo experiments further suggest excellent bone-forming activity for the enzymatic mineralized hydrogels. Overall, tuning cationicity and enzymatic mineralization provide an effective approach for the preparation of chitosan hydrogels with superior mechanical and biological properties for bone tissue engineering application.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.