{"title":"Enhanced physicochemical properties and riboflavin delivery ability of soy isolate protein/sugar beet pectin composite freeze-dried gels prepared by double crosslinking strategy","authors":"Jin Cao, Liang Li, Xiaoyu Yang","doi":"10.1016/j.carbpol.2024.122953","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the mechanical strength of protein freeze-dried gels materials has become a research priority in the field of nutrient delivery system development in recent years. In this study, double crosslinking freeze-dried gels were prepared by integrating laccase catalyzed sugar beet pectin (SBP) as a highly active filler molecule into the soybean isolate protein (SPI) thermally induced gel network, followed by freeze-drying. The double crosslinking freeze-dried gels were a porous material and the addition of SBP resulted in the formation of amorphous forms of freeze-dried gels with lower binding energy. The freeze-dried gels with 2.0 % SBP addition had the densest microstructure with the highest density (19.00 mg/cm<sup>3</sup>) and mechanical strength (180.43 ± 15.27 KPa), and hydrogen bonding, N<img>H, C<img>N, and C<img>O bands were the most important factors to maintain the freeze-dried gels structure. As the concentration of sugar beet pectin increased, the release mechanism of riboflavin underwent a shift from a Fickian to a non-Fickian diffusion mechanism. In addition, the highest bioavailability of riboflavin was found in the freeze-dried gels spiked with 2.0 % SBP. These results will contribute to the development of double crosslinking freeze-dried gels carriers for targeted slow release of hydrophilic bioactive.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"349 ","pages":"Article 122953"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724011792","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the mechanical strength of protein freeze-dried gels materials has become a research priority in the field of nutrient delivery system development in recent years. In this study, double crosslinking freeze-dried gels were prepared by integrating laccase catalyzed sugar beet pectin (SBP) as a highly active filler molecule into the soybean isolate protein (SPI) thermally induced gel network, followed by freeze-drying. The double crosslinking freeze-dried gels were a porous material and the addition of SBP resulted in the formation of amorphous forms of freeze-dried gels with lower binding energy. The freeze-dried gels with 2.0 % SBP addition had the densest microstructure with the highest density (19.00 mg/cm3) and mechanical strength (180.43 ± 15.27 KPa), and hydrogen bonding, NH, CN, and CO bands were the most important factors to maintain the freeze-dried gels structure. As the concentration of sugar beet pectin increased, the release mechanism of riboflavin underwent a shift from a Fickian to a non-Fickian diffusion mechanism. In addition, the highest bioavailability of riboflavin was found in the freeze-dried gels spiked with 2.0 % SBP. These results will contribute to the development of double crosslinking freeze-dried gels carriers for targeted slow release of hydrophilic bioactive.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.