Mingguang Li , Haobiao Chen , Zhongjie Zhang , Jinjian Chen , Qirun Yang
{"title":"Numerical analysis of a deep and oversized group excavation: A case study","authors":"Mingguang Li , Haobiao Chen , Zhongjie Zhang , Jinjian Chen , Qirun Yang","doi":"10.1016/j.undsp.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>Group excavations are composed of several individual excavations adjacent to each other with simultaneous or successive construction sequences (CS), which are distinctive from individual excavation in terms of the performance of excavation. In this study, a hyper-scale 3D finite element model was established to investigate the deformation behavior of a diaphragm wall system retaining a deep and oversized group excavation (DOGE) in Shanghai soft clay deposits. The numerical model simulated the practical construction stages and sequences, and it was verified by a series of comparisons with field measurements. Based on the numerical model, the spatial effect of the performance of DOGE in the process of excavation stages was investigated in this study, which cannot be addressed by limited field measurements. Furthermore, the effects of partition walls and CS on the deformation control were discussed to provide practical suggestions for oversized and deep excavations. The results indicate that the employment of bi-partition walls to divide the oversized excavation into several small pits and mono-partition walls and cross walls to further divide the pits near the metro lines into smaller ones, was proved to have significant effectiveness in controlling the wall deflection and protecting the adjacent metro line. For the partition wall, the magnitude and direction of the wall deflection primarily depended on the initial excavation, while the influence of subsequent excavation activities proved insignificant. Thus, it should be noted that the effect of the initial excavation should be especially concentrated. The findings can help optimize similar DOGE engineering.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"21 ","pages":"Pages 178-197"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424001077","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Group excavations are composed of several individual excavations adjacent to each other with simultaneous or successive construction sequences (CS), which are distinctive from individual excavation in terms of the performance of excavation. In this study, a hyper-scale 3D finite element model was established to investigate the deformation behavior of a diaphragm wall system retaining a deep and oversized group excavation (DOGE) in Shanghai soft clay deposits. The numerical model simulated the practical construction stages and sequences, and it was verified by a series of comparisons with field measurements. Based on the numerical model, the spatial effect of the performance of DOGE in the process of excavation stages was investigated in this study, which cannot be addressed by limited field measurements. Furthermore, the effects of partition walls and CS on the deformation control were discussed to provide practical suggestions for oversized and deep excavations. The results indicate that the employment of bi-partition walls to divide the oversized excavation into several small pits and mono-partition walls and cross walls to further divide the pits near the metro lines into smaller ones, was proved to have significant effectiveness in controlling the wall deflection and protecting the adjacent metro line. For the partition wall, the magnitude and direction of the wall deflection primarily depended on the initial excavation, while the influence of subsequent excavation activities proved insignificant. Thus, it should be noted that the effect of the initial excavation should be especially concentrated. The findings can help optimize similar DOGE engineering.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.