The strategy of copper oxide control ammonia atmosphere constructs S-scheme g-C3N4 heterojunction photocatalyst for photocatalytic hydrogen evolution

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yizhen Wang, Ruoyang Han, Qingchao Liu, Jianshe Wang
{"title":"The strategy of copper oxide control ammonia atmosphere constructs S-scheme g-C3N4 heterojunction photocatalyst for photocatalytic hydrogen evolution","authors":"Yizhen Wang,&nbsp;Ruoyang Han,&nbsp;Qingchao Liu,&nbsp;Jianshe Wang","doi":"10.1016/j.colsurfa.2024.135765","DOIUrl":null,"url":null,"abstract":"<div><div>Graphite carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is a promising candidate for photocatalytic hydrogen evolution, but only shows mediocre activity due to insufficient active sites and sluggish charge transfer. Herein, we assembled 1D/0D holey sulfur doped rectangular hollow g-C<sub>3</sub>N<sub>4</sub> nanotubes (HSCNT)/CdS S-scheme heterojunction via the strategy of copper oxide control ammonia atmosphere and in-situ deposition method. Advanced characterization results suggested that copper oxide plays an important role in morphology regulation to increase the active site, and S-scheme heterojunction can efficiently promote charge separation through their specially coupled heterogeneous interface. As a result, HSCNT/CdS exhibited dramatically improved photocatalytic hydrogen production at 68-fold enhancement compared to bulk g-C<sub>3</sub>N<sub>4</sub> (BCN). The integrated strategy may offer a unique example for the rational combination morphology regulation of carbon nitride and heterogeneous structure construction.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135765"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026293","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphite carbon nitride (g-C3N4) is a promising candidate for photocatalytic hydrogen evolution, but only shows mediocre activity due to insufficient active sites and sluggish charge transfer. Herein, we assembled 1D/0D holey sulfur doped rectangular hollow g-C3N4 nanotubes (HSCNT)/CdS S-scheme heterojunction via the strategy of copper oxide control ammonia atmosphere and in-situ deposition method. Advanced characterization results suggested that copper oxide plays an important role in morphology regulation to increase the active site, and S-scheme heterojunction can efficiently promote charge separation through their specially coupled heterogeneous interface. As a result, HSCNT/CdS exhibited dramatically improved photocatalytic hydrogen production at 68-fold enhancement compared to bulk g-C3N4 (BCN). The integrated strategy may offer a unique example for the rational combination morphology regulation of carbon nitride and heterogeneous structure construction.
氧化铜控制氨气氛的策略构建了光催化氢进化的 S 型 g-C3N4 异质结光催化剂
氮化石墨(g-C3N4)是一种很有前景的光催化氢气进化候选材料,但由于活性位点不足和电荷转移迟缓,其活性表现平平。在此,我们通过氧化铜控制氨气气氛和原位沉积法组装了 1D/0D 孔硫掺杂矩形空心 g-C3N4 纳米管(HSCNT)/CdS S 型异质结。先进的表征结果表明,氧化铜在调节形貌以增加活性位点方面发挥了重要作用,而 S 型异质结通过其特殊耦合的异质界面可有效促进电荷分离。因此,HSCNT/CdS 的光催化制氢能力与块状 g-C3N4(BCN)相比显著提高了 68 倍。该集成策略为氮化碳的合理组合形态调节和异质结构构建提供了一个独特的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信