The commuting variety of pgln

IF 0.8 2区 数学 Q2 MATHEMATICS
Vlad Roman
{"title":"The commuting variety of pgln","authors":"Vlad Roman","doi":"10.1016/j.jalgebra.2024.10.034","DOIUrl":null,"url":null,"abstract":"<div><div>We are considering the commuting variety of the Lie algebra <span><math><msub><mrow><mi>pgl</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over an algebraically closed field of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>, namely the set of pairs <span><math><mo>{</mo><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>pgl</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>pgl</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo><mo>=</mo><mn>0</mn><mo>}</mo></math></span>. We prove that if <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mi>r</mi></math></span>, then there are precisely two irreducible components, of dimensions <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>r</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>n</mi><mo>−</mo><mn>2</mn></math></span>. We also prove that the variety <span><math><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>×</mo><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>|</mo><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>=</mo><mi>ζ</mi><mi>I</mi><mo>}</mo></math></span> is irreducible of dimension <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>n</mi><mo>/</mo><mi>d</mi></math></span>, where <em>ζ</em> is a root of unity of order <em>d</em> with <em>d</em> dividing <em>n</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"665 ","pages":"Pages 229-242"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005945","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are considering the commuting variety of the Lie algebra pgln over an algebraically closed field of characteristic p>0, namely the set of pairs {(A,B)pgln×pgln|[A,B]=0}. We prove that if n=pr, then there are precisely two irreducible components, of dimensions n2+r1 and n2+n2. We also prove that the variety {(x,y)GLn(k)×GLn(k)|[x,y]=ζI} is irreducible of dimension n2+n/d, where ζ is a root of unity of order d with d dividing n.
pgln 的换向变种
我们考虑的是特征 p>0 的代数闭域上的李代数 pgln 的换元杂集,即{(A,B)∈pgln×pgln|[A,B]=0}对的集合。我们证明,如果 n=pr,那么恰好有两个不可还原成分,维数分别为 n2+r-1 和 n2+n-2。我们还证明了{(x,y)∈GLn(k)×GLn(k)|[x,y]=ζI}是维数为n2+n/d的不可约分项,其中ζ是阶数为d且d除以n的统一根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信