{"title":"The commuting variety of pgln","authors":"Vlad Roman","doi":"10.1016/j.jalgebra.2024.10.034","DOIUrl":null,"url":null,"abstract":"<div><div>We are considering the commuting variety of the Lie algebra <span><math><msub><mrow><mi>pgl</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over an algebraically closed field of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, namely the set of pairs <span><math><mo>{</mo><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>pgl</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>pgl</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo><mo>=</mo><mn>0</mn><mo>}</mo></math></span>. We prove that if <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mi>r</mi></math></span>, then there are precisely two irreducible components, of dimensions <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>r</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>n</mi><mo>−</mo><mn>2</mn></math></span>. We also prove that the variety <span><math><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>×</mo><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>|</mo><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>=</mo><mi>ζ</mi><mi>I</mi><mo>}</mo></math></span> is irreducible of dimension <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>n</mi><mo>/</mo><mi>d</mi></math></span>, where <em>ζ</em> is a root of unity of order <em>d</em> with <em>d</em> dividing <em>n</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"665 ","pages":"Pages 229-242"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005945","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We are considering the commuting variety of the Lie algebra over an algebraically closed field of characteristic , namely the set of pairs . We prove that if , then there are precisely two irreducible components, of dimensions and . We also prove that the variety is irreducible of dimension , where ζ is a root of unity of order d with d dividing n.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.