Non-associative Frobenius algebras of type E61 with trivial Tits algebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Jari Desmet
{"title":"Non-associative Frobenius algebras of type E61 with trivial Tits algebras","authors":"Jari Desmet","doi":"10.1016/j.jalgebra.2024.10.035","DOIUrl":null,"url":null,"abstract":"<div><div>Very recently, Maurice Chayet and Skip Garibaldi have introduced a class of commutative non-associative algebras, for each simple linear algebraic group over an arbitrary field (with some minor restriction on the characteristic). In a previous paper, we gave an explicit description of these algebras for groups of type <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> in terms of the octonion algebras and the Albert algebras, respectively. In this paper, we attempt a similar approach for type <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"665 ","pages":"Pages 205-228"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005933","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Very recently, Maurice Chayet and Skip Garibaldi have introduced a class of commutative non-associative algebras, for each simple linear algebraic group over an arbitrary field (with some minor restriction on the characteristic). In a previous paper, we gave an explicit description of these algebras for groups of type G2 and F4 in terms of the octonion algebras and the Albert algebras, respectively. In this paper, we attempt a similar approach for type E6.
E61 型非共轭弗罗贝尼斯代数与微不足道的 Tits 代数
最近,莫里斯-查耶(Maurice Chayet)和斯基普-加里巴尔迪(Skip Garibaldi)为任意域上的每个简单线性代数群(对特征有一些小限制)引入了一类交换非共轭布拉。在前一篇论文中,我们分别用八分子代数和阿尔伯特代数对这些代数的 G2 和 F4 型群进行了明确描述。在本文中,我们尝试用类似的方法来描述 E6 型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信