{"title":"Chain extension of poly(butylene terephthalate)/organically modified clay nanocomposites","authors":"Basak Tuna","doi":"10.1016/j.jestch.2024.101910","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal degradation of poly(butylene terephthalate) (PBT)/organically modified clay (organoclay) nanocomposites at elevated extrusion temperatures is inevitable and restricts the extensive use for these nanocomposites. This study aimed to prepare PBT/organoclay nanocomposite with enhanced properties by chain extender assisted reactive extrusion approach. A commercial organoclay, Cloisite 30B (C30B), was employed to prepare nanocomposite and a chain extender having multi epoxy functional groups, Joncryl ADR 4300 (Joncryl), was used to compensate thermal degradation of PBT accelerated by the organoclay for the first time. The morphological observations revealed high delamination of C30B within the matrix and the incorporation of Joncryl led to a well-exfoliated structure. The non-chain extended nanocomposite showed the matrix degradation in the rheological tests, where the notable benefit of the chain extender to offset degradation was observed by improvements in the viscoelastic properties. Compared to neat PBT, the tensile modulus of non-chain extended nanocomposite increased by 33 %, whereas a 56 % enhancement was measured for nanocomposite with chain extender. Thermogravimetric analyses indicated higher thermal decomposition temperature with addition of Joncryl into the nanocomposites. It was concluded that Joncryl recoupled degraded chains of PBT and effectively improved the features of nanocomposites.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101910"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624002969","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal degradation of poly(butylene terephthalate) (PBT)/organically modified clay (organoclay) nanocomposites at elevated extrusion temperatures is inevitable and restricts the extensive use for these nanocomposites. This study aimed to prepare PBT/organoclay nanocomposite with enhanced properties by chain extender assisted reactive extrusion approach. A commercial organoclay, Cloisite 30B (C30B), was employed to prepare nanocomposite and a chain extender having multi epoxy functional groups, Joncryl ADR 4300 (Joncryl), was used to compensate thermal degradation of PBT accelerated by the organoclay for the first time. The morphological observations revealed high delamination of C30B within the matrix and the incorporation of Joncryl led to a well-exfoliated structure. The non-chain extended nanocomposite showed the matrix degradation in the rheological tests, where the notable benefit of the chain extender to offset degradation was observed by improvements in the viscoelastic properties. Compared to neat PBT, the tensile modulus of non-chain extended nanocomposite increased by 33 %, whereas a 56 % enhancement was measured for nanocomposite with chain extender. Thermogravimetric analyses indicated higher thermal decomposition temperature with addition of Joncryl into the nanocomposites. It was concluded that Joncryl recoupled degraded chains of PBT and effectively improved the features of nanocomposites.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)