Cecilia Cavaterra , Maurizio Grasselli , Muhammed Ali Mehmood , Riccardo Voso
{"title":"Analysis of a Navier–Stokes phase-field crystal system","authors":"Cecilia Cavaterra , Maurizio Grasselli , Muhammed Ali Mehmood , Riccardo Voso","doi":"10.1016/j.nonrwa.2024.104263","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an evolution system modeling a flow of colloidal particles which are suspended in an incompressible fluid and accounts for colloidal crystallization. The system consists of the Navier–Stokes equations for the volume averaged velocity coupled with the so-called Phase-Field Crystal equation for the density deviation. Considering this system in a periodic domain and assuming that the viscosity as well as the mobility depend on the density deviation, we first prove the existence of a weak solution in dimension three. Then, in dimension two, we establish the existence of a (unique) strong solution.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"83 ","pages":"Article 104263"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002025","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider an evolution system modeling a flow of colloidal particles which are suspended in an incompressible fluid and accounts for colloidal crystallization. The system consists of the Navier–Stokes equations for the volume averaged velocity coupled with the so-called Phase-Field Crystal equation for the density deviation. Considering this system in a periodic domain and assuming that the viscosity as well as the mobility depend on the density deviation, we first prove the existence of a weak solution in dimension three. Then, in dimension two, we establish the existence of a (unique) strong solution.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.