Stochastic generalized standard materials and risk-averse effective behavior

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jeremy Bleyer
{"title":"Stochastic generalized standard materials and risk-averse effective behavior","authors":"Jeremy Bleyer","doi":"10.1016/j.jmps.2024.105952","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we develop a theoretical formulation for describing dissipative material behaviors in a stochastic setting, using the framework of Generalized Standard Materials (GSM). Our goal is to capture the variability inherent in the material model while ensuring thermodynamic consistency, by employing the mathematical framework of stochastic programming. We first show how average behaviors can be computed using the expected value of the free energy and dissipation pseudo-potentials. We then introduce the concept of a risk-averse effective measure, which provides both an optimistic and a pessimistic estimate of the uncertain material behavior. To this end, we utilize the Conditional Value-at-Risk, a widely used risk measure in mathematical finance. We also demonstrate how these concepts can be extended to variational problems at the structure scale, allowing us to compute the effective response of a structure composed of a stochastic material.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"195 ","pages":"Article 105952"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624004186","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we develop a theoretical formulation for describing dissipative material behaviors in a stochastic setting, using the framework of Generalized Standard Materials (GSM). Our goal is to capture the variability inherent in the material model while ensuring thermodynamic consistency, by employing the mathematical framework of stochastic programming. We first show how average behaviors can be computed using the expected value of the free energy and dissipation pseudo-potentials. We then introduce the concept of a risk-averse effective measure, which provides both an optimistic and a pessimistic estimate of the uncertain material behavior. To this end, we utilize the Conditional Value-at-Risk, a widely used risk measure in mathematical finance. We also demonstrate how these concepts can be extended to variational problems at the structure scale, allowing us to compute the effective response of a structure composed of a stochastic material.
随机广义标准材料和规避风险的有效行为
在这项工作中,我们利用广义标准材料(GSM)框架,开发了一种在随机环境下描述耗散材料行为的理论公式。我们的目标是通过采用随机编程的数学框架,在确保热力学一致性的同时,捕捉材料模型中固有的可变性。我们首先展示了如何利用自由能和耗散伪势的预期值计算平均行为。然后,我们引入了风险规避有效度量的概念,它能对不确定的材料行为做出乐观和悲观的估计。为此,我们利用了条件风险值,这是数学金融中广泛使用的一种风险度量。我们还演示了如何将这些概念扩展到结构尺度的变分问题,从而计算由随机材料组成的结构的有效响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信