{"title":"Environmental management and restoration under unified risk and uncertainty using robustified dynamic Orlicz risk","authors":"Hidekazu Yoshioka , Motoh Tsujimura , Futoshi Aranishi , Tomomi Tanaka","doi":"10.1016/j.cnsns.2024.108398","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental management and restoration should be designed such that the risk and uncertainty owing to nonlinear stochastic systems can be successfully addressed. We apply the robustified dynamic Orlicz risk to the modeling and analysis of environmental management and restoration to consider both the risk and uncertainty within a unified theory. We focus on the control of a jump-driven hybrid stochastic system that represents macrophyte dynamics. The dynamic programming equation based on the Orlicz risk is first obtained heuristically, from which the associated Hamilton–Jacobi–Bellman (HJB) equation is derived. In the proposed Orlicz risk, the risk aversion of the decision-maker is represented by a power coefficient that resembles a certainty equivalence, whereas the uncertainty aversion is represented by the Kullback–Leibler divergence, in which the risk and uncertainty are handled consistently and separately. The HJB equation includes a new state-dependent discount factor that arises from the uncertainty aversion, which leads to a unique, nonlinear, and nonlocal term. The link between the proposed and classical stochastic control problems is discussed with a focus on control-dependent discount rates. We propose a finite difference method for computing the HJB equation. Finally, the proposed model is applied to an optimal harvesting problem for macrophytes in a brackish lake that contains both growing and drifting populations.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108398"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005835","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental management and restoration should be designed such that the risk and uncertainty owing to nonlinear stochastic systems can be successfully addressed. We apply the robustified dynamic Orlicz risk to the modeling and analysis of environmental management and restoration to consider both the risk and uncertainty within a unified theory. We focus on the control of a jump-driven hybrid stochastic system that represents macrophyte dynamics. The dynamic programming equation based on the Orlicz risk is first obtained heuristically, from which the associated Hamilton–Jacobi–Bellman (HJB) equation is derived. In the proposed Orlicz risk, the risk aversion of the decision-maker is represented by a power coefficient that resembles a certainty equivalence, whereas the uncertainty aversion is represented by the Kullback–Leibler divergence, in which the risk and uncertainty are handled consistently and separately. The HJB equation includes a new state-dependent discount factor that arises from the uncertainty aversion, which leads to a unique, nonlinear, and nonlocal term. The link between the proposed and classical stochastic control problems is discussed with a focus on control-dependent discount rates. We propose a finite difference method for computing the HJB equation. Finally, the proposed model is applied to an optimal harvesting problem for macrophytes in a brackish lake that contains both growing and drifting populations.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.