{"title":"Platinum group metals-based electrodes for high-performance lithium-oxygen batteries: A mini-review","authors":"Ntakadzeni Madima, Mpfunzeni Raphulu","doi":"10.1016/j.jelechem.2024.118799","DOIUrl":null,"url":null,"abstract":"<div><div>In the realm of energy storage, the evolution of lithium-oxygen (Li-O<sub>2</sub>) batteries has garnered substantial attention, owing to their potential to revolutionize electric vehicles. For a long time, ideas for sustainable development have positioned platinum group metals (PGMs) as potentially revolutionary, especially in the automotive industry. Intended to enhance Li-O<sub>2</sub> battery performance, PGMs are appealing due to their catalytic activities and this might be a big step forward for the electrification automotive industry and possibly pave the way for longer-lasting batteries used for reasons other than transportation. Therefore, this review explores progressions in PGMs-based electrocatalysts used as electrode materials for Li-O<sub>2</sub> batteries, starting with an overview of the Li-O<sub>2</sub> battery principle and its challenges. It then examines in detail the utilization of PGMs-based electrocatalysts as electrode materials for improving Li-O<sub>2</sub> battery performance. Finally, it addresses the remaining hurdles preventing the full integration of PGMs into battery technologies, offering insights into the current status and future possibilities for PGMs in Li-O<sub>2</sub> battery technology.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"976 ","pages":"Article 118799"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157266572400777X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of energy storage, the evolution of lithium-oxygen (Li-O2) batteries has garnered substantial attention, owing to their potential to revolutionize electric vehicles. For a long time, ideas for sustainable development have positioned platinum group metals (PGMs) as potentially revolutionary, especially in the automotive industry. Intended to enhance Li-O2 battery performance, PGMs are appealing due to their catalytic activities and this might be a big step forward for the electrification automotive industry and possibly pave the way for longer-lasting batteries used for reasons other than transportation. Therefore, this review explores progressions in PGMs-based electrocatalysts used as electrode materials for Li-O2 batteries, starting with an overview of the Li-O2 battery principle and its challenges. It then examines in detail the utilization of PGMs-based electrocatalysts as electrode materials for improving Li-O2 battery performance. Finally, it addresses the remaining hurdles preventing the full integration of PGMs into battery technologies, offering insights into the current status and future possibilities for PGMs in Li-O2 battery technology.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.