Influence of floating bubbles in a liquid layer on temperature measurements under acoustic-vacuum exposure

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
V.I. Trushlyakov , A.V. Panichkin , I.Y. Lesnyak
{"title":"Influence of floating bubbles in a liquid layer on temperature measurements under acoustic-vacuum exposure","authors":"V.I. Trushlyakov ,&nbsp;A.V. Panichkin ,&nbsp;I.Y. Lesnyak","doi":"10.1016/j.ijthermalsci.2024.109561","DOIUrl":null,"url":null,"abstract":"<div><div>Investigations were made on how bubbles formed in a liquid influence the readings of a temperature sensor – spherical junction of the thermocouple (SJT) under acoustic-vacuum exposure. According to the proposed hypothesis, the sharp change in liquid temperature can be explained by the fact that under acoustic-vacuum exposure, liquid steam bubbles form on the SJT surface or floating bubbles stick (slip) to it. The temperature of the liquid steam inside the bubbles is higher than that of the surrounding liquid. When the bubbles break away or collapse, the surface temperature of the spherical junction of the thermocouple decreases due to heat exchange with the liquid. A mathematical model was developed for the process of bubbles generation in a liquid under acoustic-vacuum exposure and numerical experiments were carried out. They demonstrated that changes in the temperature of thermocouple readings are influenced mostly by the bubbles forming at the bottom of the experimental container with their subsequent ascent and collapse on the SJT surface. A sharp change in the temperature of the liquid is by 1.5 K–7 K at the bubble collapse on the surface of the thermocouple; by 0.7 K at a bubble sliding over the thermocouple surface; and by 3.5 K–5.5 K at bubble formation on the thermocouple. The results of comparing the liquid temperature values during physical and numerical modeling confirm the hypothesis put forward about the influence of bubbles on the thermocouple readings.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"209 ","pages":"Article 109561"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006835","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Investigations were made on how bubbles formed in a liquid influence the readings of a temperature sensor – spherical junction of the thermocouple (SJT) under acoustic-vacuum exposure. According to the proposed hypothesis, the sharp change in liquid temperature can be explained by the fact that under acoustic-vacuum exposure, liquid steam bubbles form on the SJT surface or floating bubbles stick (slip) to it. The temperature of the liquid steam inside the bubbles is higher than that of the surrounding liquid. When the bubbles break away or collapse, the surface temperature of the spherical junction of the thermocouple decreases due to heat exchange with the liquid. A mathematical model was developed for the process of bubbles generation in a liquid under acoustic-vacuum exposure and numerical experiments were carried out. They demonstrated that changes in the temperature of thermocouple readings are influenced mostly by the bubbles forming at the bottom of the experimental container with their subsequent ascent and collapse on the SJT surface. A sharp change in the temperature of the liquid is by 1.5 K–7 K at the bubble collapse on the surface of the thermocouple; by 0.7 K at a bubble sliding over the thermocouple surface; and by 3.5 K–5.5 K at bubble formation on the thermocouple. The results of comparing the liquid temperature values during physical and numerical modeling confirm the hypothesis put forward about the influence of bubbles on the thermocouple readings.
液体层中的浮动气泡对声学真空暴露下温度测量的影响
研究了在真空声暴露下,液体中形成的气泡如何影响温度传感器 - 热电偶球形接点(SJT)的读数。根据提出的假设,液体温度的急剧变化可以用以下事实来解释:在声真空暴露条件下,液体蒸汽气泡在 SJT 表面形成,或者浮动气泡粘附(滑动)到 SJT 表面。气泡内液体蒸汽的温度高于周围液体的温度。当气泡破裂或坍塌时,由于与液体进行热交换,热电偶球形结的表面温度会降低。针对声真空暴露下液体中气泡的产生过程,我们建立了一个数学模型,并进行了数值实验。实验表明,热电偶读数温度的变化主要受实验容器底部形成的气泡及其随后在 SJT 表面上升和塌陷的影响。气泡在热电偶表面塌陷时,液体温度急剧变化 1.5 K-7 K;气泡在热电偶表面滑动时,液体温度急剧变化 0.7 K;气泡在热电偶上形成时,液体温度急剧变化 3.5 K-5.5 K。物理建模和数值建模过程中液体温度值的比较结果证实了关于气泡对热电偶读数影响的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信