Abduraboh Alraae , Ali Moussadik , Abdellah Benzaouak , Mohammed Kacimi , Mohammed Dahhou , Aicha Sifou , Adnane El Hamidi
{"title":"One-step eco-friendly synthesis of Ag nanoparticles on bentonite-g-C₃N₄ for the reduction of hazardous organic pollutants in industrial wastewater.","authors":"Abduraboh Alraae , Ali Moussadik , Abdellah Benzaouak , Mohammed Kacimi , Mohammed Dahhou , Aicha Sifou , Adnane El Hamidi","doi":"10.1016/j.nxnano.2024.100116","DOIUrl":null,"url":null,"abstract":"<div><div>Silver nanoparticles (Ag NPs) supported on natural materials have garnered significant attention due to their wide applicability across various research fields. This study presents an eco-friendly, scalable, and one-step approach to synthesizing high-purity Ag NPs supported by bentonite-graphitic carbon nitride (Bt-g-C<sub>3</sub>N<sub>4</sub>) nanocomposites via thermal reduction. The successful integration of Ag NPs into the Bt-g-C<sub>3</sub>N<sub>4</sub> matrix was confirmed through several characterization techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDX). XRF analysis identified the clay as beidellite-rich (Si/Al molar ratio less than 2), while EDX spectra and XRD patterns confirmed the presence of Ag NPs, with characteristic peaks at 38.04<sup>°</sup> and 44.24<sup>°</sup>. SEM and TEM images showed uniform Ag NP distribution with an average particle size of 4.75 nm and a spherical morphology. Acid-activated bentonite preserved its layered structure and exhibited a significant surface area increase, reaching 113.77 m²/g after hydrochloric acid treatment, thereby enhancing its capacity for supporting nanoparticle-based catalysts. The synthesized nanocomposites demonstrated exceptional catalytic performance, achieving reduction efficiencies of approximately 99 % for various organic pollutants, including nitrophenols (within 7 min for 4-nitrophenol), cationic dyes (within 12 min for Rhodamine B), and anionic dyes (within 5 min for methyl orange), using sodium borohydride (NaBH<sub>4</sub>) as the reducing agent. The reduction followed first-order kinetics, with activity factors (k′) calculated as 134 s<sup>−1</sup>.g<sup>−1</sup>, 260 s<sup>−1</sup>.g<sup>−1</sup>, and 92 s<sup>−1</sup>.g<sup>−1</sup> for 4-NP, MO, and RhB, respectively. Furthermore, the Ag NPs/Bt-g-C<sub>3</sub>N<sub>4</sub> nanocomposites exhibited remarkable recyclability, maintaining high catalytic efficiency across multiple cycles.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100116"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Silver nanoparticles (Ag NPs) supported on natural materials have garnered significant attention due to their wide applicability across various research fields. This study presents an eco-friendly, scalable, and one-step approach to synthesizing high-purity Ag NPs supported by bentonite-graphitic carbon nitride (Bt-g-C3N4) nanocomposites via thermal reduction. The successful integration of Ag NPs into the Bt-g-C3N4 matrix was confirmed through several characterization techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDX). XRF analysis identified the clay as beidellite-rich (Si/Al molar ratio less than 2), while EDX spectra and XRD patterns confirmed the presence of Ag NPs, with characteristic peaks at 38.04° and 44.24°. SEM and TEM images showed uniform Ag NP distribution with an average particle size of 4.75 nm and a spherical morphology. Acid-activated bentonite preserved its layered structure and exhibited a significant surface area increase, reaching 113.77 m²/g after hydrochloric acid treatment, thereby enhancing its capacity for supporting nanoparticle-based catalysts. The synthesized nanocomposites demonstrated exceptional catalytic performance, achieving reduction efficiencies of approximately 99 % for various organic pollutants, including nitrophenols (within 7 min for 4-nitrophenol), cationic dyes (within 12 min for Rhodamine B), and anionic dyes (within 5 min for methyl orange), using sodium borohydride (NaBH4) as the reducing agent. The reduction followed first-order kinetics, with activity factors (k′) calculated as 134 s−1.g−1, 260 s−1.g−1, and 92 s−1.g−1 for 4-NP, MO, and RhB, respectively. Furthermore, the Ag NPs/Bt-g-C3N4 nanocomposites exhibited remarkable recyclability, maintaining high catalytic efficiency across multiple cycles.