Local and global trend Bayesian exponential smoothing models

IF 6.9 2区 经济学 Q1 ECONOMICS
Slawek Smyl , Christoph Bergmeir , Alexander Dokumentov , Xueying Long , Erwin Wibowo , Daniel Schmidt
{"title":"Local and global trend Bayesian exponential smoothing models","authors":"Slawek Smyl ,&nbsp;Christoph Bergmeir ,&nbsp;Alexander Dokumentov ,&nbsp;Xueying Long ,&nbsp;Erwin Wibowo ,&nbsp;Daniel Schmidt","doi":"10.1016/j.ijforecast.2024.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>This paper describes a family of seasonal and non-seasonal time series models that can be viewed as generalisations of additive and multiplicative exponential smoothing models to model series that grow faster than linear but slower than exponential. Their development is motivated by fast-growing, volatile time series. In particular, our models have a global trend that can smoothly change from additive to multiplicative and is combined with a linear local trend. Seasonality, when used, is multiplicative in our models, and the error is always additive but heteroscedastic and can grow through a parameter sigma. We leverage state-of-the-art Bayesian fitting techniques to fit these models accurately, which are more complex and flexible than standard exponential smoothing models. When applied to the M3 competition data set, our models outperform the best algorithms in the competition and other benchmarks, thus achieving, to the best of our knowledge, the best results of per-series univariate methods on this dataset in the literature. An open-source software package of our method is available.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 111-127"},"PeriodicalIF":6.9000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000311","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a family of seasonal and non-seasonal time series models that can be viewed as generalisations of additive and multiplicative exponential smoothing models to model series that grow faster than linear but slower than exponential. Their development is motivated by fast-growing, volatile time series. In particular, our models have a global trend that can smoothly change from additive to multiplicative and is combined with a linear local trend. Seasonality, when used, is multiplicative in our models, and the error is always additive but heteroscedastic and can grow through a parameter sigma. We leverage state-of-the-art Bayesian fitting techniques to fit these models accurately, which are more complex and flexible than standard exponential smoothing models. When applied to the M3 competition data set, our models outperform the best algorithms in the competition and other benchmarks, thus achieving, to the best of our knowledge, the best results of per-series univariate methods on this dataset in the literature. An open-source software package of our method is available.
局部和全局趋势贝叶斯指数平滑模型
本文描述了一系列季节性和非季节性时间序列模型,这些模型可以看作是加法和乘法指数平滑模型的一般化,用于模拟增长速度快于线性但慢于指数的序列。开发这些模型的动力来自于快速增长、变化无常的时间序列。特别是,我们的模型有一个可以从加法平滑转变为乘法的全局趋势,并与线性局部趋势相结合。在我们的模型中,季节性(如果使用)是乘性的,误差始终是加性的,但也是异方差的,并且可以通过参数 sigma 增长。我们利用最先进的贝叶斯拟合技术来精确拟合这些模型,它们比标准指数平滑模型更加复杂和灵活。当应用于 M3 竞赛数据集时,我们的模型优于竞赛中的最佳算法和其他基准,因此,据我们所知,我们的模型取得了文献中该数据集上每序列单变量方法的最佳结果。我们的方法有一个开源软件包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信