Structural stability of non-isentropic Euler-Poisson system for gaseous stars

IF 2.4 2区 数学 Q1 MATHEMATICS
Ben Duan , Zhen Luo , Chunpeng Wang
{"title":"Structural stability of non-isentropic Euler-Poisson system for gaseous stars","authors":"Ben Duan ,&nbsp;Zhen Luo ,&nbsp;Chunpeng Wang","doi":"10.1016/j.jde.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns the non-isentropic steady compressible Euler-Poisson system in annuluses, which models the motion of gaseous stars with the gravitational interactions between gas particles and pressure forces. In the paper, the Euler-Poisson system is reformulated and decomposed into transport equations and coupled second-order nonlinear elliptic equations in polar coordinates. Not only the existence and the uniqueness, but also the structural stability of subsonic solutions are established.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"417 ","pages":"Pages 105-131"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007265","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns the non-isentropic steady compressible Euler-Poisson system in annuluses, which models the motion of gaseous stars with the gravitational interactions between gas particles and pressure forces. In the paper, the Euler-Poisson system is reformulated and decomposed into transport equations and coupled second-order nonlinear elliptic equations in polar coordinates. Not only the existence and the uniqueness, but also the structural stability of subsonic solutions are established.
气态恒星非各向同性欧拉-泊松系统的结构稳定性
本文涉及环面中的非各向同性稳定可压缩欧拉-泊松系统,该系统利用气体粒子之间的引力相互作用和压力作用来模拟气态星体的运动。本文将欧拉-泊松系统重新表述并分解为极坐标下的传输方程和耦合二阶非线性椭圆方程。不仅确定了亚音速解的存在性和唯一性,而且确定了其结构稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信