Jingyi Wang , Jinbin Yang , Yu Feng , Jing Hua , Zhengjian Chen , Mei Liao , Jingran Zhang , Jiang Qin
{"title":"Comparative experimental study of alkaline and proton exchange membrane water electrolysis for green hydrogen production","authors":"Jingyi Wang , Jinbin Yang , Yu Feng , Jing Hua , Zhengjian Chen , Mei Liao , Jingran Zhang , Jiang Qin","doi":"10.1016/j.apenergy.2024.124936","DOIUrl":null,"url":null,"abstract":"<div><div>Alkaline electrolysis (ALK) and polymer electrolyte membrane electrolysis (PEM) are two pivotal technologies supporting the advancement of green hydrogen production. Understanding their distinct characteristics is essential for optimizing production systems, with potential implications for future hybrid electrolysis strategies. However, experimental studies on green hydrogen electrolysis are limited, particularly comparative investigations between these two systems. This study conducts a comprehensive comparative experimental analysis of ALK and PEM systems with an identical hydrogen production rate of 1400 ml/min. It focuses on electro-heat-mass coupled dynamics across steady-state, cold-start, controlled dynamic processes, and solar power integration. Results reveal that PEM consumes less energy for hydrogen production, ranging from 4.1 to 4.3 kWh/Nm<sup>3</sup>, compared to 4.6–4.8 kWh/Nm<sup>3</sup> for ALK. This study proposes that cold start time be characterized by two specific time points: reaching rated electrical parameters and achieving operational conditions. The second time point is typically longer and represents the primary limiting factor in the cold start process. Dynamic responses during ramp-up and ramp-down processes are notably asymmetric, with longer durations observed during ramp-down. Heat and gas purity responses to electrical changes also follow distinct patterns, with hydrogen to oxygen (HTO) stabilizing slower than temperature and oxygen to hydrogen (OTH). This facilitates the potential that the lower load limit can be reduced under dynamic conditions compared to steady states, as demonstrated by ALK and PEM adjusting from 50 % to 30 % and from 40 % to 10 % respectively in solar integration. Both systems exhibit agile ramp rate, with ALK adjusting its current by 70 %/s and PEM by 90 %/s. Both systems show viability for solar power integration, with PEM being more immediately suitable, while ALK requires further investigation to effectively manage rising HTO levels. This study provides an experimental data foundation and insights for advancing green hydrogen production.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"379 ","pages":"Article 124936"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924023195","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Alkaline electrolysis (ALK) and polymer electrolyte membrane electrolysis (PEM) are two pivotal technologies supporting the advancement of green hydrogen production. Understanding their distinct characteristics is essential for optimizing production systems, with potential implications for future hybrid electrolysis strategies. However, experimental studies on green hydrogen electrolysis are limited, particularly comparative investigations between these two systems. This study conducts a comprehensive comparative experimental analysis of ALK and PEM systems with an identical hydrogen production rate of 1400 ml/min. It focuses on electro-heat-mass coupled dynamics across steady-state, cold-start, controlled dynamic processes, and solar power integration. Results reveal that PEM consumes less energy for hydrogen production, ranging from 4.1 to 4.3 kWh/Nm3, compared to 4.6–4.8 kWh/Nm3 for ALK. This study proposes that cold start time be characterized by two specific time points: reaching rated electrical parameters and achieving operational conditions. The second time point is typically longer and represents the primary limiting factor in the cold start process. Dynamic responses during ramp-up and ramp-down processes are notably asymmetric, with longer durations observed during ramp-down. Heat and gas purity responses to electrical changes also follow distinct patterns, with hydrogen to oxygen (HTO) stabilizing slower than temperature and oxygen to hydrogen (OTH). This facilitates the potential that the lower load limit can be reduced under dynamic conditions compared to steady states, as demonstrated by ALK and PEM adjusting from 50 % to 30 % and from 40 % to 10 % respectively in solar integration. Both systems exhibit agile ramp rate, with ALK adjusting its current by 70 %/s and PEM by 90 %/s. Both systems show viability for solar power integration, with PEM being more immediately suitable, while ALK requires further investigation to effectively manage rising HTO levels. This study provides an experimental data foundation and insights for advancing green hydrogen production.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.