Optimizing energy conversion in direct carbon fuel cells based on brown coal char: Exploring the impacts of scandium substituted La0.6Sr0.4FeO3-δ anodes

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Senran Hao , Xiao Chen , Boyuan Liu , Hao Wu , Yingjie Zhang , Shuo Zhai , Idris Temitope Bello , Jie Xiao
{"title":"Optimizing energy conversion in direct carbon fuel cells based on brown coal char: Exploring the impacts of scandium substituted La0.6Sr0.4FeO3-δ anodes","authors":"Senran Hao ,&nbsp;Xiao Chen ,&nbsp;Boyuan Liu ,&nbsp;Hao Wu ,&nbsp;Yingjie Zhang ,&nbsp;Shuo Zhai ,&nbsp;Idris Temitope Bello ,&nbsp;Jie Xiao","doi":"10.1016/j.apenergy.2024.124920","DOIUrl":null,"url":null,"abstract":"<div><div>Direct coal fuel cells (DCFCs) convert the chemical energy in coal directly into electricity, but their development has been hindered by insufficiently active anode materials and slow carbon oxidation kinetics. This study explores the use of scandium-doped B-site-deficient La<sub>0.6</sub>Sr<sub>0.4</sub>FeO<sub>3-δ</sub> (LSFSc<sub>x</sub>, x = 0, 0.05, 0.10, 0.15) as anodes for brown coal char utilization in DCFCs. Our findings show that LSFSc<sub>x</sub> (x<span><math><mo>≠</mo><mn>0</mn></math></span>) anodes outperform the undoped LSF anode, with the LSFSc<sub>0.1</sub> anode exhibiting the best performance. At 850 °C, the LSFSc<sub>0.1</sub> anode achieves a maximum power density of 345.5 mW cm<sup>−2</sup>, a minimum polarization resistance of 0.18 Ω cm<sup>2</sup>, and an impressive discharge time of 13.23 h. These enhancements are attributed to scandium doping, which improves the three-phase reaction boundaries, enhances carbon oxidation through better oxide ion transport, and optimizes the electronic structure. Theoretical calculations indicate that scandium doping reduces the Bader charges of Fe atoms, weakens O<img>Fe bonds, lowers the oxygen vacancy formation energy, and maintains the electronic energy band structures. These results provide a new and effective pathway to improve the anode performance and efficiency of DCFCs, showcasing new possibilities for future research on scandium-based perovskite materials for DCFC applications.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"379 ","pages":"Article 124920"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924023031","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Direct coal fuel cells (DCFCs) convert the chemical energy in coal directly into electricity, but their development has been hindered by insufficiently active anode materials and slow carbon oxidation kinetics. This study explores the use of scandium-doped B-site-deficient La0.6Sr0.4FeO3-δ (LSFScx, x = 0, 0.05, 0.10, 0.15) as anodes for brown coal char utilization in DCFCs. Our findings show that LSFScx (x0) anodes outperform the undoped LSF anode, with the LSFSc0.1 anode exhibiting the best performance. At 850 °C, the LSFSc0.1 anode achieves a maximum power density of 345.5 mW cm−2, a minimum polarization resistance of 0.18 Ω cm2, and an impressive discharge time of 13.23 h. These enhancements are attributed to scandium doping, which improves the three-phase reaction boundaries, enhances carbon oxidation through better oxide ion transport, and optimizes the electronic structure. Theoretical calculations indicate that scandium doping reduces the Bader charges of Fe atoms, weakens OFe bonds, lowers the oxygen vacancy formation energy, and maintains the electronic energy band structures. These results provide a new and effective pathway to improve the anode performance and efficiency of DCFCs, showcasing new possibilities for future research on scandium-based perovskite materials for DCFC applications.
优化基于褐煤炭的直接碳燃料电池的能量转换:探索钪取代 La0.6Sr0.4FeO3-δ 阳极的影响
直接煤燃料电池(DCFCs)可将煤中的化学能直接转化为电能,但其发展一直受到活性阳极材料不足和碳氧化动力学缓慢的阻碍。本研究探讨了在 DCFCs 中使用掺钪的 B-位缺陷 La0.6Sr0.4FeO3-δ (LSFScx,x = 0、0.05、0.10、0.15)作为阳极来利用褐煤炭。我们的研究结果表明,LSFScx(x≠0)阳极的性能优于未掺杂的 LSF 阳极,其中 LSFSc0.1 阳极的性能最好。在 850 °C 时,LSFSc0.1 阳极的最大功率密度为 345.5 mW cm-2,最小极化电阻为 0.18 Ω cm2,放电时间为 13.23 h。这些性能的提高归功于钪的掺杂,它改善了三相反应边界,通过更好的氧化物离子传输增强了碳氧化,并优化了电子结构。理论计算表明,掺杂钪可降低铁原子的巴德电荷,减弱 OFe 键,降低氧空位形成能,并保持电子能带结构。这些结果为提高直流FC 的阳极性能和效率提供了一条新的有效途径,为今后研究直流FC 应用中的钪基包晶材料提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信