Zixiao Guo , Jing Sun , Shuaibin Wan , Zhenyu Wang , Jiayou Ren , Lyuming Pan , Lei Wei , Xinzhuang Fan , Tianshou Zhao
{"title":"Deep neural network-assisted fast and precise simulations of electrolyte flows in redox flow batteries","authors":"Zixiao Guo , Jing Sun , Shuaibin Wan , Zhenyu Wang , Jiayou Ren , Lyuming Pan , Lei Wei , Xinzhuang Fan , Tianshou Zhao","doi":"10.1016/j.apenergy.2024.124910","DOIUrl":null,"url":null,"abstract":"<div><div>Flow fields are a key component in redox flow batteries, which is to distribute electrolytes onto electrodes at the maximum uniformity with the minimum pump work. Achieving this design goal requires accurate simulations of electrolyte flows and identification of the dead zones where the flows become weak or stagnant. However, conventional case-by-case numerical simulation requires significant computational resources. In this work, we use deep learning to predict the electrolyte flow in flow batteries with a neural network knows as U-Net. The U-Net is well trained by learning the mapping between the input (flow field geometry) and output (velocity magnitude distribution). Results show that the pixel-wise comparison of the velocity magnitudes between the U-Net-predicted results and finite element simulated results exhibits an average Euclidean distance of 442.6 and an average R<sup>2</sup> of 0.979, indicating that the electrolyte distribution can be accurately simulated based on the geometric characteristics of flow fields. In addition, dead zones are precisely identified by labeling the regions with low velocity magnitudes. Modifying the channel depth in these regions substantially enhances the under-rib convection, thereby improving the system efficiency by 5.5 % at 200 mA cm<sup>−2</sup>. Furthermore, compared to the numerical simulation, the U-Net-assisted prediction significantly reduces the computational time by 99.9 %. It is anticipated that the U-Net-assisted simulation provides an accurate and efficient tool for obtaining the velocity distribution of flow fields that can assist the flow field design especially in large quantities and large scale.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"379 ","pages":"Article 124910"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924022931","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Flow fields are a key component in redox flow batteries, which is to distribute electrolytes onto electrodes at the maximum uniformity with the minimum pump work. Achieving this design goal requires accurate simulations of electrolyte flows and identification of the dead zones where the flows become weak or stagnant. However, conventional case-by-case numerical simulation requires significant computational resources. In this work, we use deep learning to predict the electrolyte flow in flow batteries with a neural network knows as U-Net. The U-Net is well trained by learning the mapping between the input (flow field geometry) and output (velocity magnitude distribution). Results show that the pixel-wise comparison of the velocity magnitudes between the U-Net-predicted results and finite element simulated results exhibits an average Euclidean distance of 442.6 and an average R2 of 0.979, indicating that the electrolyte distribution can be accurately simulated based on the geometric characteristics of flow fields. In addition, dead zones are precisely identified by labeling the regions with low velocity magnitudes. Modifying the channel depth in these regions substantially enhances the under-rib convection, thereby improving the system efficiency by 5.5 % at 200 mA cm−2. Furthermore, compared to the numerical simulation, the U-Net-assisted prediction significantly reduces the computational time by 99.9 %. It is anticipated that the U-Net-assisted simulation provides an accurate and efficient tool for obtaining the velocity distribution of flow fields that can assist the flow field design especially in large quantities and large scale.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.