Bo Zhao, Weige Zhang, Yanru Zhang, Caiping Zhang, Chi Zhang, Junwei Zhang
{"title":"Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization","authors":"Bo Zhao, Weige Zhang, Yanru Zhang, Caiping Zhang, Chi Zhang, Junwei Zhang","doi":"10.1016/j.apenergy.2024.124713","DOIUrl":null,"url":null,"abstract":"<div><div>As intelligent computation power in embedded systems has rapidly developed in recent years, the health state monitoring and remaining useful life prediction of batteries based on deep learning can gradually be deployed and applied in the onboard management system. However, there are still problems with large amounts of data calculation, high model complexity, and poor interpretability. Therefore, this paper proposes a remaining life prediction method for batteries combined with interpretable deep learning and network optimization. First, based on the fused deep learning model, the interpretable algorithm is used to explain the degree of attention of the model to different features and quantify the contribution of each part in input data, thereby identifying important aging features and removing useless data. Then, structured pruning is adopted to remove redundant network parameters under the constraints of ensuring prediction accuracy. The structure generally realizes model interpretation and full process optimization from battery aging data to network parameters. According to the validation of the selected dataset, compared with the original model, the model optimized by the method proposed in this paper has an average prediction accuracy increase of 0.19 % and an average speed increase of 46.88 %. It greatly saves computational resource consumption and improves model operation efficiency while ensuring prediction accuracy. In addition, the explanation and analysis of crucial feature areas in battery aging data provide a reference for effective health management.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"379 ","pages":"Article 124713"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924020968","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
As intelligent computation power in embedded systems has rapidly developed in recent years, the health state monitoring and remaining useful life prediction of batteries based on deep learning can gradually be deployed and applied in the onboard management system. However, there are still problems with large amounts of data calculation, high model complexity, and poor interpretability. Therefore, this paper proposes a remaining life prediction method for batteries combined with interpretable deep learning and network optimization. First, based on the fused deep learning model, the interpretable algorithm is used to explain the degree of attention of the model to different features and quantify the contribution of each part in input data, thereby identifying important aging features and removing useless data. Then, structured pruning is adopted to remove redundant network parameters under the constraints of ensuring prediction accuracy. The structure generally realizes model interpretation and full process optimization from battery aging data to network parameters. According to the validation of the selected dataset, compared with the original model, the model optimized by the method proposed in this paper has an average prediction accuracy increase of 0.19 % and an average speed increase of 46.88 %. It greatly saves computational resource consumption and improves model operation efficiency while ensuring prediction accuracy. In addition, the explanation and analysis of crucial feature areas in battery aging data provide a reference for effective health management.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.