Qi Li , YanLi Gong , Yingxin Li , Sha Li , WenLang Liang , Y.X. Leng
{"title":"Study on the lubrication behavior of tannic acid/ poly (vinyl alcohol) hydrogel enhanced by protein adsorption for articular cartilage applications","authors":"Qi Li , YanLi Gong , Yingxin Li , Sha Li , WenLang Liang , Y.X. Leng","doi":"10.1016/j.jmbbm.2024.106825","DOIUrl":null,"url":null,"abstract":"<div><div>Poly (vinyl alcohol) (PVA)-based hydrogels are widely regarded as ideal cartilage replacement materials because of their excellent properties. However, they have drawbacks such as high coefficient of friction (COF) and insufficient wear resistance. As important components of the synovial fluid, proteins are involved in counter-pairs and effect their tribological behavior via denaturation. Tannic acid (TA), which is rich in hydroxyl groups, can bind strongly proteins and change their conformation. In this study, the structure and lubrication performance of TA/PVA hydrogels in phosphate buffer saline (PBS) and bovine serum albumin (BSA) solutions were investigated. The results indicated that TA molecules enhanced the stiffness of the hydrogel by forming hydrogen bonds with PVA, reducing its COF in the PBS solution. In BSA solution, the tribological behavior of the PT hydrogels is altered by the BSA adsorbed at the hydrogel interface owing to the addition of TA. The COF of the PVA hydrogels with a TA content of 0.5 wt% is as low as 0.045, which was approximately 2.67 times lower than that of the PVA hydrogel under the same conditions. The benzene rings and hydroxyl groups in TA were connected to BSA molecules through hydrogen bonding, inducing a conformational change in the BSA from an α-helix structure to β-sheet structure, which further improves the lubricating properties of the hydrogel.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"162 ","pages":"Article 106825"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004570","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Poly (vinyl alcohol) (PVA)-based hydrogels are widely regarded as ideal cartilage replacement materials because of their excellent properties. However, they have drawbacks such as high coefficient of friction (COF) and insufficient wear resistance. As important components of the synovial fluid, proteins are involved in counter-pairs and effect their tribological behavior via denaturation. Tannic acid (TA), which is rich in hydroxyl groups, can bind strongly proteins and change their conformation. In this study, the structure and lubrication performance of TA/PVA hydrogels in phosphate buffer saline (PBS) and bovine serum albumin (BSA) solutions were investigated. The results indicated that TA molecules enhanced the stiffness of the hydrogel by forming hydrogen bonds with PVA, reducing its COF in the PBS solution. In BSA solution, the tribological behavior of the PT hydrogels is altered by the BSA adsorbed at the hydrogel interface owing to the addition of TA. The COF of the PVA hydrogels with a TA content of 0.5 wt% is as low as 0.045, which was approximately 2.67 times lower than that of the PVA hydrogel under the same conditions. The benzene rings and hydroxyl groups in TA were connected to BSA molecules through hydrogen bonding, inducing a conformational change in the BSA from an α-helix structure to β-sheet structure, which further improves the lubricating properties of the hydrogel.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.