Marco Lopriore , Marilisa Alongi , Sonia Calligaris , Lara Manzocco , Giulia Ravaioli , Ada Nucci , Maria Cristina Nicoli
{"title":"Moisture uptake during storage of coffee packed into compostable capsules decreases the quality of coffee brew","authors":"Marco Lopriore , Marilisa Alongi , Sonia Calligaris , Lara Manzocco , Giulia Ravaioli , Ada Nucci , Maria Cristina Nicoli","doi":"10.1016/j.fpsl.2024.101403","DOIUrl":null,"url":null,"abstract":"<div><div>Compostable bioplastics for coffee capsule production should satisfy compostability requirements while providing a moisture barrier able to guarantee the espresso coffee quality. The present study aimed at exploring the time required for coffee packed in biobased PBS capsules and stored under different temperature and relative humidity to reach critical moisture levels triggering quality decay. Samples were stored in plastic boxes containing supersaturated solutions of Mg(NO<sub>3</sub>)<sub>2</sub>, NaNO<sub>2</sub> or NaCl guaranteeing 54, 65 or 75 % RH, placed at 20, 30 and 45 °C in thermostatic incubators. During storage, the coffee powder was analysed for moisture uptake and water activity, and the coffee brew was extracted to measure the pH, selected as the quality indicator. Over 18 months, moisture uptake rapidly increased, reaching critical levels within 3 weeks in the worst-case scenario (<em>i.e.</em>, 45 °C and 75 % RH). The evolution of pH presented an initial lag phase and a subsequent linear decay, which were respectively shorter (< 15 days) and faster (pH < 5.1 within 1 month) in the worst-case scenario. The findings highlight the role of T and RH in affecting coffee quality decay and emphasize the potential drawbacks of adopting biopolymer-based packaging. These outcomes could help food manufacturers in scouting new packaging materials for coffee capsule applications, evidencing the potential drawbacks of replacing conventional packaging materials with biobased ones. In this regard, it is recommended that a thorough cost-benefit analysis is carried out before transitioning from conventional to compostable packaging to ensure sustainability goals are effectively met while maintaining product quality.</div></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"46 ","pages":"Article 101403"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289424001686","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Compostable bioplastics for coffee capsule production should satisfy compostability requirements while providing a moisture barrier able to guarantee the espresso coffee quality. The present study aimed at exploring the time required for coffee packed in biobased PBS capsules and stored under different temperature and relative humidity to reach critical moisture levels triggering quality decay. Samples were stored in plastic boxes containing supersaturated solutions of Mg(NO3)2, NaNO2 or NaCl guaranteeing 54, 65 or 75 % RH, placed at 20, 30 and 45 °C in thermostatic incubators. During storage, the coffee powder was analysed for moisture uptake and water activity, and the coffee brew was extracted to measure the pH, selected as the quality indicator. Over 18 months, moisture uptake rapidly increased, reaching critical levels within 3 weeks in the worst-case scenario (i.e., 45 °C and 75 % RH). The evolution of pH presented an initial lag phase and a subsequent linear decay, which were respectively shorter (< 15 days) and faster (pH < 5.1 within 1 month) in the worst-case scenario. The findings highlight the role of T and RH in affecting coffee quality decay and emphasize the potential drawbacks of adopting biopolymer-based packaging. These outcomes could help food manufacturers in scouting new packaging materials for coffee capsule applications, evidencing the potential drawbacks of replacing conventional packaging materials with biobased ones. In this regard, it is recommended that a thorough cost-benefit analysis is carried out before transitioning from conventional to compostable packaging to ensure sustainability goals are effectively met while maintaining product quality.
期刊介绍:
Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.