Constructing a binderless carbon-coated In2O3 anode for high-performance lithium-ion batteries

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yuan Liu , Wanping Liu , Xuelei Li , Jun Liu , Xiaoyan Liu , Aruuhan Bayaguud
{"title":"Constructing a binderless carbon-coated In2O3 anode for high-performance lithium-ion batteries","authors":"Yuan Liu ,&nbsp;Wanping Liu ,&nbsp;Xuelei Li ,&nbsp;Jun Liu ,&nbsp;Xiaoyan Liu ,&nbsp;Aruuhan Bayaguud","doi":"10.1016/j.jpcs.2024.112481","DOIUrl":null,"url":null,"abstract":"<div><div>Indium oxide (In<sub>2</sub>O<sub>3</sub>) anode material exhibits significant potential in lithium-ion batteries due to its low operating voltage and high theoretical specific capacity. However, its poor conductivity and substantial volume changes during Li<sup>+</sup> insertion and extraction result in subpar rate performance and cycling stability. To address these issues, a binderless carbon-coated In<sub>2</sub>O<sub>3</sub> anode is constructed, utilizing foam nickel as the current collector and liquid nitrile rubber (LNBR-820H) with high adhesion as the carbon source. This approach enhances conductivity and mitigates volume expansion problems. The synergistic effects of carbon coating and binderless construction yield the In<sub>2</sub>O<sub>3</sub>@C10%-Ni-BL anode with an initial discharge specific capacity of 1052.43 mAh g<sup>−1</sup>, a discharge specific capacity of 513.60 mAh g<sup>−1</sup> after 200 cycles, and improved rate performance. These findings demonstrate the viability of this synergistic strategy, which not only circumvents the negative impact of binders on conductivity and enhances Li<sup>+</sup> insertion/extraction efficiency but also increases the proportion of active materials, thereby improving both rate performance and cycling stability of the anode.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"198 ","pages":"Article 112481"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724006164","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Indium oxide (In2O3) anode material exhibits significant potential in lithium-ion batteries due to its low operating voltage and high theoretical specific capacity. However, its poor conductivity and substantial volume changes during Li+ insertion and extraction result in subpar rate performance and cycling stability. To address these issues, a binderless carbon-coated In2O3 anode is constructed, utilizing foam nickel as the current collector and liquid nitrile rubber (LNBR-820H) with high adhesion as the carbon source. This approach enhances conductivity and mitigates volume expansion problems. The synergistic effects of carbon coating and binderless construction yield the In2O3@C10%-Ni-BL anode with an initial discharge specific capacity of 1052.43 mAh g−1, a discharge specific capacity of 513.60 mAh g−1 after 200 cycles, and improved rate performance. These findings demonstrate the viability of this synergistic strategy, which not only circumvents the negative impact of binders on conductivity and enhances Li+ insertion/extraction efficiency but also increases the proportion of active materials, thereby improving both rate performance and cycling stability of the anode.
构建用于高性能锂离子电池的无粘合剂碳涂层 In2O3 负极
氧化铟(In2O3)负极材料因其低工作电压和高理论比容量而在锂离子电池中展现出巨大潜力。然而,由于其导电性较差,且在 Li+ 插入和提取过程中体积变化较大,导致其速率性能和循环稳定性不佳。为了解决这些问题,我们利用泡沫镍作为集流体,利用具有高附着力的液态丁腈橡胶(LNBR-820H)作为碳源,构建了一种无粘合剂碳涂层 In2O3 阳极。这种方法提高了导电性并缓解了体积膨胀问题。在碳涂层和无粘合剂结构的协同作用下,In2O3@C10%-Ni-BL 阳极的初始放电比容量为 1052.43 mAh g-1,200 次循环后的放电比容量为 513.60 mAh g-1,速率性能也有所提高。这些发现证明了这种协同策略的可行性,它不仅规避了粘合剂对电导率的负面影响,提高了 Li+ 插入/萃取效率,还增加了活性材料的比例,从而改善了阳极的速率性能和循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信