{"title":"Growth and characterization of n-type Ga2O3 films on sapphire substrates by APMOVPE","authors":"Shun Ukita, Takeyoshi Tajiri, Kazuo Uchida","doi":"10.1016/j.jcrysgro.2024.128007","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, n-type Ga<sub>2</sub>O<sub>3</sub> thin films were grown on c-plane sapphire substrates by atmospheric pressure metalorganic vapor phase epitaxy using tetraethoxysilane (TEOS) as the silicon (Si) precursor. X-ray diffraction measurements confirmed that the deposited films were polycrystalline, predominantly consisting of the stable β-phase and the metastable κ-phase. Surface and optical characterizations indicated that lower growth temperature and appropriate Si doping reduce the grain size of three-dimensional Ga<sub>2</sub>O<sub>3</sub> islands, thereby enhancing optical transmittance by mitigating surface scattering. Hall effect measurements demonstrated a maximum electron carrier concentration of approximately 1 × 10<sup>17</sup> /cm<sup>3</sup> at room temperature, while secondary ion mass spectrometry (SIMS) revealed that Si atomic concentrations were exceeding 1 × 10<sup>20</sup> /cm<sup>3</sup> in all n-type samples indicating low doping efficiency of Si. Carbon (C) impurities were also measured by SIMS with concentrations as the same order or higher than that of Si, implying they may be one of the reasons for the degraded electrical conductivity and originated from incomplete decomposition of the precursors during low temperature growth. From these results, it is crucial to reduce C impurities and enhance surface flatness to improve electrical and optical properties.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"650 ","pages":"Article 128007"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824004457","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, n-type Ga2O3 thin films were grown on c-plane sapphire substrates by atmospheric pressure metalorganic vapor phase epitaxy using tetraethoxysilane (TEOS) as the silicon (Si) precursor. X-ray diffraction measurements confirmed that the deposited films were polycrystalline, predominantly consisting of the stable β-phase and the metastable κ-phase. Surface and optical characterizations indicated that lower growth temperature and appropriate Si doping reduce the grain size of three-dimensional Ga2O3 islands, thereby enhancing optical transmittance by mitigating surface scattering. Hall effect measurements demonstrated a maximum electron carrier concentration of approximately 1 × 1017 /cm3 at room temperature, while secondary ion mass spectrometry (SIMS) revealed that Si atomic concentrations were exceeding 1 × 1020 /cm3 in all n-type samples indicating low doping efficiency of Si. Carbon (C) impurities were also measured by SIMS with concentrations as the same order or higher than that of Si, implying they may be one of the reasons for the degraded electrical conductivity and originated from incomplete decomposition of the precursors during low temperature growth. From these results, it is crucial to reduce C impurities and enhance surface flatness to improve electrical and optical properties.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.