Can smart cities improve energy resilience? Evidence from 229 cities in China

IF 10.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Zhen Wang , Yu Hao
{"title":"Can smart cities improve energy resilience? Evidence from 229 cities in China","authors":"Zhen Wang ,&nbsp;Yu Hao","doi":"10.1016/j.scs.2024.105971","DOIUrl":null,"url":null,"abstract":"<div><div>Energy security is a crucial component of national economic stability and growth. Given current technological limitations, improving management strategies is essential for safeguarding energy resources. Digital technologies play a pivotal role in enhancing management efficiency, thus contributing to energy security. As a key element of modernization, smart cities leverage digital solutions to drive urban development and have the potential to catalyze an energy revolution. Nevertheless, the relationship between energy security and smart cities remains underexplored, creating gaps in policy-making and implementation. This study, leveraging the smart city pilot policies enacted in 2012, 2013, and 2015, utilizes a sample of 229 prefecture-level cities covering the period from 2010 to 2020. Employing the Propensity Score Matched Difference-in-Differences (PSM-DID) model, the research assesses smart city policies’ impact on energy resilience. The results show that smart city policies significantly enhance energy resilience through three separate pathways: optimizing resource allocation, upgrading industrial structure, and promoting technological progress. Notably, smart city polices have more beneficial effects on the city characterized by low fiscal expenditure, being populous, resource-based, having high human capital, and being located in eastern region. This study aids in the improvement and promotion of smart city policies, thereby enhancing energy resilience and achieving sustainable urban development.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"117 ","pages":"Article 105971"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724007959","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy security is a crucial component of national economic stability and growth. Given current technological limitations, improving management strategies is essential for safeguarding energy resources. Digital technologies play a pivotal role in enhancing management efficiency, thus contributing to energy security. As a key element of modernization, smart cities leverage digital solutions to drive urban development and have the potential to catalyze an energy revolution. Nevertheless, the relationship between energy security and smart cities remains underexplored, creating gaps in policy-making and implementation. This study, leveraging the smart city pilot policies enacted in 2012, 2013, and 2015, utilizes a sample of 229 prefecture-level cities covering the period from 2010 to 2020. Employing the Propensity Score Matched Difference-in-Differences (PSM-DID) model, the research assesses smart city policies’ impact on energy resilience. The results show that smart city policies significantly enhance energy resilience through three separate pathways: optimizing resource allocation, upgrading industrial structure, and promoting technological progress. Notably, smart city polices have more beneficial effects on the city characterized by low fiscal expenditure, being populous, resource-based, having high human capital, and being located in eastern region. This study aids in the improvement and promotion of smart city policies, thereby enhancing energy resilience and achieving sustainable urban development.
智慧城市能否提高能源适应能力?来自中国 229 个城市的证据
能源安全是国家经济稳定和增长的重要组成部分。鉴于当前技术的局限性,改进管理策略对保障能源资源至关重要。数字技术在提高管理效率方面发挥着举足轻重的作用,从而为能源安全做出贡献。作为现代化的关键因素,智慧城市利用数字解决方案推动城市发展,并有可能催生能源革命。然而,能源安全与智慧城市之间的关系仍未得到充分探索,从而在政策制定和实施方面造成了差距。本研究利用 2012 年、2013 年和 2015 年颁布的智慧城市试点政策,以 229 个地级市为样本,时间跨度为 2010 年至 2020 年。研究采用倾向得分匹配差分(PSM-DID)模型,评估了智慧城市政策对能源抵御能力的影响。研究结果表明,智慧城市政策通过优化资源配置、升级产业结构和促进技术进步三条途径显著增强了能源抵御能力。值得注意的是,智慧城市政策对财政支出低、人口多、资源型、人力资本高、地处东部地区的城市更有利。本研究有助于完善和推广智慧城市政策,从而提高能源抵御能力,实现城市可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Cities and Society
Sustainable Cities and Society Social Sciences-Geography, Planning and Development
CiteScore
22.00
自引率
13.70%
发文量
810
审稿时长
27 days
期刊介绍: Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including: 1. Smart cities and resilient environments; 2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management; 3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management); 4. Energy efficient, low/zero carbon, and green buildings/communities; 5. Climate change mitigation and adaptation in urban environments; 6. Green infrastructure and BMPs; 7. Environmental Footprint accounting and management; 8. Urban agriculture and forestry; 9. ICT, smart grid and intelligent infrastructure; 10. Urban design/planning, regulations, legislation, certification, economics, and policy; 11. Social aspects, impacts and resiliency of cities; 12. Behavior monitoring, analysis and change within urban communities; 13. Health monitoring and improvement; 14. Nexus issues related to sustainable cities and societies; 15. Smart city governance; 16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society; 17. Big data, machine learning, and artificial intelligence applications and case studies; 18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems. 19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management; 20. Waste reduction and recycling; 21. Wastewater collection, treatment and recycling; 22. Smart, clean and healthy transportation systems and infrastructure;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信