Jiangpeng Li , Qiuchen He , Su Zhan , Lin Zhou , Junjie Zhang , Yuchen Qiao , Ziming Zhao , Dehui Yang , Wenjun Jiang , Feng Zhou
{"title":"Synthesis of oxygen-rich carbon materials as metal-free catalysts for oxygen reduction reaction in seawater electrolyte","authors":"Jiangpeng Li , Qiuchen He , Su Zhan , Lin Zhou , Junjie Zhang , Yuchen Qiao , Ziming Zhao , Dehui Yang , Wenjun Jiang , Feng Zhou","doi":"10.1016/j.vacuum.2024.113834","DOIUrl":null,"url":null,"abstract":"<div><div>Compared to conventional aqueous metal-air batteries, seawater batteries provide a promising strategy for the sustainable energy conversion and storage systems. However, the intricate ionic environment of seawater, in particular, Cl<sup>−</sup> significantly restraint the oxygen reduction reaction (ORR) activity of the catalysts. Herein, mesoporous carbon materials with abundant oxygen-containing functional groups were simply fabricated as the cost-effective catalysts from the biowaste <em>Ginkgo biloba</em>, exhibiting prominent stability and ORR activity with a 4e<sup>−</sup> path selectivity up to 92 % in seawater electrolyte. Structure characterization and ORR experimental results indicated the ORR performance was significantly modulated by the C-O-C in carbon matrix, and the synergistic of C-O-C and N-containing configuration may further enhance the dissociation of O-O of ∗OOH, resulting in an optimized 4e<sup>−</sup> path selectivity. Additionally, the <em>Ginkgo biloba</em> derived catalysts displayed an overpotential of 580 mV for at 10 mA/cm<sup>2</sup> more negative than that of the previously reported commercial Ir/C in seawater electrolyte. This study highlights the synthesis of sustainable and cost-effective catalysts for seawater batteries, offering a strategy for designing metal-free catalysts of seawater battery, and promoting the advancement of sustainable energy conversion and storage technologies.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"232 ","pages":"Article 113834"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008807","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to conventional aqueous metal-air batteries, seawater batteries provide a promising strategy for the sustainable energy conversion and storage systems. However, the intricate ionic environment of seawater, in particular, Cl− significantly restraint the oxygen reduction reaction (ORR) activity of the catalysts. Herein, mesoporous carbon materials with abundant oxygen-containing functional groups were simply fabricated as the cost-effective catalysts from the biowaste Ginkgo biloba, exhibiting prominent stability and ORR activity with a 4e− path selectivity up to 92 % in seawater electrolyte. Structure characterization and ORR experimental results indicated the ORR performance was significantly modulated by the C-O-C in carbon matrix, and the synergistic of C-O-C and N-containing configuration may further enhance the dissociation of O-O of ∗OOH, resulting in an optimized 4e− path selectivity. Additionally, the Ginkgo biloba derived catalysts displayed an overpotential of 580 mV for at 10 mA/cm2 more negative than that of the previously reported commercial Ir/C in seawater electrolyte. This study highlights the synthesis of sustainable and cost-effective catalysts for seawater batteries, offering a strategy for designing metal-free catalysts of seawater battery, and promoting the advancement of sustainable energy conversion and storage technologies.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.