{"title":"IoT-driven wearable devices enhancing healthcare: ECG classification with cluster-based GAN and meta-features","authors":"Constantino Msigwa , Denis Bernard , Jaeseok Yun","doi":"10.1016/j.iot.2024.101405","DOIUrl":null,"url":null,"abstract":"<div><div>Wearable devices in medical technology promise advancements in healthcare but face challenges like limited data use and delayed analysis, hindering their real-time effectiveness. Enabling wearable devices with edge computing maximizes their potential, allowing real-time tasks like ECG classification to be performed intelligently at the device level. We propose the Wearable IoT Edge, a computing device that empowers wearable health devices with real-time data insights and IoT capabilities, facilitated by the Wearable Interworking Proxy and compliant with oneM2M standard-based server. We demonstrate the application of a proposed Wearable IoT Edge by addressing ECG classification challenges. Our approach addresses data imbalance by integrating a Cluster-Based Generative Adversarial Network (GAN) with meta-features derived from Convolutional Neural Networks (CNNs) and Transformers to enhance ECG classification accuracy. Experimental results demonstrate a 3.18% improvement in the F1 score for ECG classification validating the effectiveness of the approach. These findings highlight the Wearable IoT Edge’s potential to improve real-time healthcare monitoring and diagnostics.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101405"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524003469","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable devices in medical technology promise advancements in healthcare but face challenges like limited data use and delayed analysis, hindering their real-time effectiveness. Enabling wearable devices with edge computing maximizes their potential, allowing real-time tasks like ECG classification to be performed intelligently at the device level. We propose the Wearable IoT Edge, a computing device that empowers wearable health devices with real-time data insights and IoT capabilities, facilitated by the Wearable Interworking Proxy and compliant with oneM2M standard-based server. We demonstrate the application of a proposed Wearable IoT Edge by addressing ECG classification challenges. Our approach addresses data imbalance by integrating a Cluster-Based Generative Adversarial Network (GAN) with meta-features derived from Convolutional Neural Networks (CNNs) and Transformers to enhance ECG classification accuracy. Experimental results demonstrate a 3.18% improvement in the F1 score for ECG classification validating the effectiveness of the approach. These findings highlight the Wearable IoT Edge’s potential to improve real-time healthcare monitoring and diagnostics.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.