High performance and multi-UV curable materials adaptable photothermal nanoparticles for near-infrared-responsive digital light processing based 4D printing
{"title":"High performance and multi-UV curable materials adaptable photothermal nanoparticles for near-infrared-responsive digital light processing based 4D printing","authors":"Shiwei Feng, Jingjing Cui, Yunlong Guo, Weizi Gao, Yongding Sun, Chen Liang, Zhe Lu, Biao Zhang","doi":"10.1016/j.compscitech.2024.110984","DOIUrl":null,"url":null,"abstract":"<div><div>Integration of functional nanomaterials into 3D printing polymers expands the versatility of 4D printing. However, high performance and multi-UV curable materials adaptable nanoparticles for 4D printing are still urgently needed to avoid printing complications and deformation limitations caused by high filler loadings. Here, high performance oxygen-deficient tungsten oxide nanoparticles (WO<sub>3-x</sub> NPs) are synthesized via a straightforward hydrothermal method, and the resulting nanoparticles (NPs) exhibit excellent photothermal property which can rapidly increase from room temperature to 562.6 °C in less than 2 s via near-infrared (NIR) light irradiation. Moreover, these NPs can also be well dispersed in a wide range of photocurable polymers, such as UV curable hydrogel, shape memory polymer, and dual-curing polymer, forming variety of nanocomposite systems. The formed nanocomposite systems can be manufactured into complex 3D structures via digital light processing based 4D printing. Just trace WO<sub>3-x</sub> NPs in nanocomposite systems (<2 wt‰) can help realize the controllable photothermal properties of the printed structures, which are capable of arbitrary spatial deformation, remote-controlled distortion, and on-demand reinforcement in response to NIR irradiation, presenting a succinct and impactful approach to broadening the application scope of light-controlled DLP-based 4D printing.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"260 ","pages":"Article 110984"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005542","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Integration of functional nanomaterials into 3D printing polymers expands the versatility of 4D printing. However, high performance and multi-UV curable materials adaptable nanoparticles for 4D printing are still urgently needed to avoid printing complications and deformation limitations caused by high filler loadings. Here, high performance oxygen-deficient tungsten oxide nanoparticles (WO3-x NPs) are synthesized via a straightforward hydrothermal method, and the resulting nanoparticles (NPs) exhibit excellent photothermal property which can rapidly increase from room temperature to 562.6 °C in less than 2 s via near-infrared (NIR) light irradiation. Moreover, these NPs can also be well dispersed in a wide range of photocurable polymers, such as UV curable hydrogel, shape memory polymer, and dual-curing polymer, forming variety of nanocomposite systems. The formed nanocomposite systems can be manufactured into complex 3D structures via digital light processing based 4D printing. Just trace WO3-x NPs in nanocomposite systems (<2 wt‰) can help realize the controllable photothermal properties of the printed structures, which are capable of arbitrary spatial deformation, remote-controlled distortion, and on-demand reinforcement in response to NIR irradiation, presenting a succinct and impactful approach to broadening the application scope of light-controlled DLP-based 4D printing.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.