Rémi Gillet, Ingrid Stenger, Subodh Kumar Gautam, Christophe Arnold, Estelle Loire, François Jomard, Julien Barjon, Marie-Amandine Pinault-Thaury
{"title":"Free-standing n-type phosphorus-doped diamond","authors":"Rémi Gillet, Ingrid Stenger, Subodh Kumar Gautam, Christophe Arnold, Estelle Loire, François Jomard, Julien Barjon, Marie-Amandine Pinault-Thaury","doi":"10.1016/j.diamond.2024.111805","DOIUrl":null,"url":null,"abstract":"<div><div>n-type diamond substrates are highly desired for diamond electronics and quantum technology based on NV centers. In this work, we investigate the high growth rates obtained using plasma with high-power densities in a commercial bell-jar chemical vapor deposition reactor equipped with a gas panel for diamond doping with phosphorus impurities. We evidence that the diamond growth rate is increased by adding phosphorus precursor in the gas mixture, up to 21.6 μm/h. We found conditions for growing extremely thick (up 580 μm) phosphorus doped (100) diamond homoepilayers keeping a n-type character as shown by optical spectroscopy. From such films we succeed in slicing a free-standing phosphorus-doped diamond plate, showing the feasibility of n-type diamond substrate fabrication for further use in optoelectronics and quantum devices.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111805"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524010185","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
n-type diamond substrates are highly desired for diamond electronics and quantum technology based on NV centers. In this work, we investigate the high growth rates obtained using plasma with high-power densities in a commercial bell-jar chemical vapor deposition reactor equipped with a gas panel for diamond doping with phosphorus impurities. We evidence that the diamond growth rate is increased by adding phosphorus precursor in the gas mixture, up to 21.6 μm/h. We found conditions for growing extremely thick (up 580 μm) phosphorus doped (100) diamond homoepilayers keeping a n-type character as shown by optical spectroscopy. From such films we succeed in slicing a free-standing phosphorus-doped diamond plate, showing the feasibility of n-type diamond substrate fabrication for further use in optoelectronics and quantum devices.
n 型金刚石衬底是基于 NV 中心的金刚石电子器件和量子技术所亟需的。在这项工作中,我们研究了在商用钟罩式化学气相沉积反应器中使用高功率密度等离子体获得的高生长率,该反应器配备了一个气体面板,用于在金刚石中掺入磷杂质。我们证明,在气体混合物中添加磷前驱体可提高金刚石的生长速度,最高可达 21.6 μm/h。我们找到了生长极厚(高达 580 μm)掺磷(100)金刚石均质薄膜的条件,并通过光学光谱显示了其 n 型特性。从这些薄膜中,我们成功地切片出了一块独立的掺磷金刚石板,显示了 n 型金刚石衬底制造的可行性,可进一步用于光电子和量子设备。
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.