Nursen Balekoglu , Jean-Francois Michaud , Rachelle Sauvé , Kehinde S. Ayinde , Sichun Lin , Yijun Liu , Daniel A. Kramer , Kaiyue Zhang , Anika Steffen , Theresia Stradal , Stephane Angers , Baoyu Chen , Patricia T. Yam , Frédéric Charron
{"title":"The WAVE regulatory complex interacts with Boc and is required for Shh-mediated axon guidance","authors":"Nursen Balekoglu , Jean-Francois Michaud , Rachelle Sauvé , Kehinde S. Ayinde , Sichun Lin , Yijun Liu , Daniel A. Kramer , Kaiyue Zhang , Anika Steffen , Theresia Stradal , Stephane Angers , Baoyu Chen , Patricia T. Yam , Frédéric Charron","doi":"10.1016/j.isci.2024.111333","DOIUrl":null,"url":null,"abstract":"<div><div>During development, Shh attracts axons of spinal cord commissural neurons to the floor plate. Shh-mediated attraction of commissural axons requires the receptor Boc. How Boc regulates cytoskeletal changes in growth cones in response to Shh is not fully understood. To identify effectors of Boc in Shh-mediated axon guidance, we used BioID to screen for proteins in proximity to Boc. Top hits included members of the WAVE regulatory complex (WRC), which acts downstream of Rac1 to promote actin cytoskeleton assembly. Therefore, we hypothesized that the WRC is important for Shh-mediated growth cone turning. Using biochemical and cellular assays, we found that Boc directly interacts with the WRC and that this interaction can occur in live cells. Moreover, we found that knockdown of <em>Nckap1</em> and <em>Cyfip1/2,</em> two subunits of the WRC, in commissural neurons, impairs axon attraction toward a Shh gradient. Our results demonstrate that the WRC is required for Shh-mediated axon attraction.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111333"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224025586","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
During development, Shh attracts axons of spinal cord commissural neurons to the floor plate. Shh-mediated attraction of commissural axons requires the receptor Boc. How Boc regulates cytoskeletal changes in growth cones in response to Shh is not fully understood. To identify effectors of Boc in Shh-mediated axon guidance, we used BioID to screen for proteins in proximity to Boc. Top hits included members of the WAVE regulatory complex (WRC), which acts downstream of Rac1 to promote actin cytoskeleton assembly. Therefore, we hypothesized that the WRC is important for Shh-mediated growth cone turning. Using biochemical and cellular assays, we found that Boc directly interacts with the WRC and that this interaction can occur in live cells. Moreover, we found that knockdown of Nckap1 and Cyfip1/2, two subunits of the WRC, in commissural neurons, impairs axon attraction toward a Shh gradient. Our results demonstrate that the WRC is required for Shh-mediated axon attraction.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.