Optical properties, thermal conductivity, and viscosity of graphene-based nanofluids for solar collectors

IF 5.45 Q1 Physics and Astronomy
M.A. Morozova , A.A. Osipov , E.A. Maksimovskiy , A.V. Zaikovsky
{"title":"Optical properties, thermal conductivity, and viscosity of graphene-based nanofluids for solar collectors","authors":"M.A. Morozova ,&nbsp;A.A. Osipov ,&nbsp;E.A. Maksimovskiy ,&nbsp;A.V. Zaikovsky","doi":"10.1016/j.nanoso.2024.101409","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofluids based on graphene and water are promising working fluids for use in solar collectors. In this study, the optical properties, thermal conductivity, and viscosity of nanofluids based on water and graphene material, with the addition of sodium dodecyl sulfate (SDS) surfactant, were experimentally investigated. To obtain these nanofluids, graphene nanoparticles were synthesized using a plasma-chemical method and were later characterized by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The relationships between the concentrations of graphene in the nanofluids and the geometric parameters of vessels for effective absorption of solar energy were determined. The spectral dependences of the extinction coefficient for the nanofluids and for aqueous solutions with black aniline dye were compared. It was found that the application of graphene-based nanofluids is more effective than aqueous solutions based on aniline dye in photothermal energy conversion. Additionally, it was noted that the addition of graphene and the SDS surfactant does not lead to an increase in viscosity or a significant change in the thermal conductivity of the nanofluids for concentrations up to 0.02 wt%. The results showed that the studied nanofluids are effective absorbers of solar energy and, at the same time, do not require additional energy consumption to move through the solar harvesting circuit.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101409"},"PeriodicalIF":5.4500,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofluids based on graphene and water are promising working fluids for use in solar collectors. In this study, the optical properties, thermal conductivity, and viscosity of nanofluids based on water and graphene material, with the addition of sodium dodecyl sulfate (SDS) surfactant, were experimentally investigated. To obtain these nanofluids, graphene nanoparticles were synthesized using a plasma-chemical method and were later characterized by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The relationships between the concentrations of graphene in the nanofluids and the geometric parameters of vessels for effective absorption of solar energy were determined. The spectral dependences of the extinction coefficient for the nanofluids and for aqueous solutions with black aniline dye were compared. It was found that the application of graphene-based nanofluids is more effective than aqueous solutions based on aniline dye in photothermal energy conversion. Additionally, it was noted that the addition of graphene and the SDS surfactant does not lead to an increase in viscosity or a significant change in the thermal conductivity of the nanofluids for concentrations up to 0.02 wt%. The results showed that the studied nanofluids are effective absorbers of solar energy and, at the same time, do not require additional energy consumption to move through the solar harvesting circuit.
用于太阳能集热器的石墨烯基纳米流体的光学特性、热导率和粘度
基于石墨烯和水的纳米流体是太阳能集热器中很有前途的工作流体。本研究通过实验研究了基于水和石墨烯材料并添加十二烷基硫酸钠(SDS)表面活性剂的纳米流体的光学特性、热导率和粘度。为了获得这些纳米流体,使用等离子体化学方法合成了石墨烯纳米颗粒,随后使用扫描电子显微镜、透射电子显微镜和拉曼光谱对其进行了表征。确定了纳米流体中石墨烯的浓度与容器几何参数之间的关系,以便有效吸收太阳能。比较了纳米流体和黑色苯胺染料水溶液消光系数的光谱依赖关系。结果发现,在光热能量转换方面,石墨烯基纳米流体比苯胺染料水溶液更有效。此外,研究还注意到,添加石墨烯和 SDS 表面活性剂不会导致纳米流体的粘度增加,也不会显著改变纳米流体的热导率(浓度不超过 0.02 wt%)。研究结果表明,所研究的纳米流体能有效吸收太阳能,同时在太阳能收集电路中流动时不需要消耗额外的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信