Patricia Ramirez-Priego , Elba Mauriz , Juliana Fátima Giarola , Laura M. Lechuga
{"title":"Overcoming challenges in plasmonic biosensors deployment for clinical and biomedical applications: A systematic review and meta-analysis","authors":"Patricia Ramirez-Priego , Elba Mauriz , Juliana Fátima Giarola , Laura M. Lechuga","doi":"10.1016/j.sbsr.2024.100717","DOIUrl":null,"url":null,"abstract":"<div><div>Over recent decades, plasmonic biosensors have positioned themselves as one of the most powerful analytical tools for evaluating biomolecular interactions. This impactful analytical technology has demonstrated its value in diverse fields such as clinical diagnostics, biotechnology, pharmaceutical evaluation, disease prevention, among others. Moreover, technological advances have led to the development of miniaturized plasmonic biosensing platforms, which are small and portable for point-of-care (POC) applications. This review presents an overview of recently implemented POC-plasmonic biosensors and their use for clinical and biomedical analysis. A systematic and deep literature search in PubMed, Scopus, and Web of Science databases was performed in publications between 1 January 2018 and 30 November 2023. We excluded many publications due to the absence of real application in complex matrices or insufficient analytical information. The quality of each study was evaluated methodologically by QUADAS-2, and a meta-analysis was performed using the Cochrane RevMan software. From 1177 full-text assessments, 27 research articles were selected. The pooled sensitivity was 4.36 (95%, CI 0.19–5.97, I<sup>2</sup> = 83%). The subgroup analysis according to the plasmonic sensors type revealed the best diagnostic odds ratio with the lowest heterogeneity: 3.81 (95% CI 0.39–39.08; I<sup>2</sup> = 33%, <em>p</em> = 0.22). These findings indicate that despite plasmonic biosensors taking advantage of their miniaturization and showing promising results in portable POC devices, there are still significant obstacles to using them as routine diagnostic tools. Estimating test accuracy may help to reduce the gap between controlled laboratory conditions and real-world clinical decision-making environments.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100717"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over recent decades, plasmonic biosensors have positioned themselves as one of the most powerful analytical tools for evaluating biomolecular interactions. This impactful analytical technology has demonstrated its value in diverse fields such as clinical diagnostics, biotechnology, pharmaceutical evaluation, disease prevention, among others. Moreover, technological advances have led to the development of miniaturized plasmonic biosensing platforms, which are small and portable for point-of-care (POC) applications. This review presents an overview of recently implemented POC-plasmonic biosensors and their use for clinical and biomedical analysis. A systematic and deep literature search in PubMed, Scopus, and Web of Science databases was performed in publications between 1 January 2018 and 30 November 2023. We excluded many publications due to the absence of real application in complex matrices or insufficient analytical information. The quality of each study was evaluated methodologically by QUADAS-2, and a meta-analysis was performed using the Cochrane RevMan software. From 1177 full-text assessments, 27 research articles were selected. The pooled sensitivity was 4.36 (95%, CI 0.19–5.97, I2 = 83%). The subgroup analysis according to the plasmonic sensors type revealed the best diagnostic odds ratio with the lowest heterogeneity: 3.81 (95% CI 0.39–39.08; I2 = 33%, p = 0.22). These findings indicate that despite plasmonic biosensors taking advantage of their miniaturization and showing promising results in portable POC devices, there are still significant obstacles to using them as routine diagnostic tools. Estimating test accuracy may help to reduce the gap between controlled laboratory conditions and real-world clinical decision-making environments.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.