Co-valorisation of cassava peel and rice husk to biofuel precursor via intermediate pyrolysis: Kinetics, thermodynamic and pyrolytic oil characterisation

Ezeh Ernest Mbamalu , Isah Yakub Mohammed
{"title":"Co-valorisation of cassava peel and rice husk to biofuel precursor via intermediate pyrolysis: Kinetics, thermodynamic and pyrolytic oil characterisation","authors":"Ezeh Ernest Mbamalu ,&nbsp;Isah Yakub Mohammed","doi":"10.1016/j.wmb.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>This study explored the co-valorisation of cassava peel and rice husk into biofuel precursors through pyrolysis. The research involved characterization of the biomass, and thermogravimetric analysis at heating rates of 5, 10, and 15 °C/min. An intermediate pyrolysis was conducted using a laboratory-scale setup with a stainless-steel reactor and a Swagelok double-ended tube, yielding pyrolytic oil for analysis. Proximate analysis revealed cassava peel (CP) contains 9.23 wt% ash, while rice husk (RH) has 16.50 wt% ash respectively, while the combined samples of cassava peel and rice husk (CS) had ash content of 74.27 wt%, fixed carbon of 70.07 wt%, and volatile matter of 75.72 wt%. The heating values for the samples were 17.15 MJ/kg, 15.22 MJ/kg, and 17.06 MJ/kg for cassava peel, rice husk, and combined sample respectively. Ultimate analysis indicated the following elemental compositions: CP (40.95 % C, 5.67 % H, 0.22 % N, 0.09 % S, 52.17 % O<sub>2</sub>), RH (40.15 % C, 5.98 % H, 0.41 % N, 0.78 % S, 52.68 % O<sub>2</sub>), and the CS (43.06 % C, 6.41 % H, 0.32 % N, 0.41 % S, 49.80 % O<sub>2</sub>). Kinetic and thermodynamic analysis from the distributed activation energy models revealed average activation energies of 184.95 kJ/mol (CP), 140.56 kJ/mol (RH), and 125.63 kJ/mol (CS). The pyrolysis products consist of 37.50 wt% pyrolytic oil, 11.12 wt% bio-char, and 51.38 wt% non-condensable gases. GC–MS analysis of the pyrolytic oil identified significant amounts of hydrocarbons, phenols, and phenol derivatives, suggesting potential for biofuel production. This study highlights the viability of combined biomass sources for biofuel production and waste to wealth utilization.</div></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"2 4","pages":"Pages 194-208"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750724000944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored the co-valorisation of cassava peel and rice husk into biofuel precursors through pyrolysis. The research involved characterization of the biomass, and thermogravimetric analysis at heating rates of 5, 10, and 15 °C/min. An intermediate pyrolysis was conducted using a laboratory-scale setup with a stainless-steel reactor and a Swagelok double-ended tube, yielding pyrolytic oil for analysis. Proximate analysis revealed cassava peel (CP) contains 9.23 wt% ash, while rice husk (RH) has 16.50 wt% ash respectively, while the combined samples of cassava peel and rice husk (CS) had ash content of 74.27 wt%, fixed carbon of 70.07 wt%, and volatile matter of 75.72 wt%. The heating values for the samples were 17.15 MJ/kg, 15.22 MJ/kg, and 17.06 MJ/kg for cassava peel, rice husk, and combined sample respectively. Ultimate analysis indicated the following elemental compositions: CP (40.95 % C, 5.67 % H, 0.22 % N, 0.09 % S, 52.17 % O2), RH (40.15 % C, 5.98 % H, 0.41 % N, 0.78 % S, 52.68 % O2), and the CS (43.06 % C, 6.41 % H, 0.32 % N, 0.41 % S, 49.80 % O2). Kinetic and thermodynamic analysis from the distributed activation energy models revealed average activation energies of 184.95 kJ/mol (CP), 140.56 kJ/mol (RH), and 125.63 kJ/mol (CS). The pyrolysis products consist of 37.50 wt% pyrolytic oil, 11.12 wt% bio-char, and 51.38 wt% non-condensable gases. GC–MS analysis of the pyrolytic oil identified significant amounts of hydrocarbons, phenols, and phenol derivatives, suggesting potential for biofuel production. This study highlights the viability of combined biomass sources for biofuel production and waste to wealth utilization.
通过中间热解将木薯皮和稻壳共价化为生物燃料前体:动力学、热力学和热解油特性分析
本研究探讨了通过热解将木薯皮和稻壳共价化为生物燃料前体的方法。研究涉及生物质的表征,以及在 5、10 和 15 °C/min 升温速率下的热重分析。在实验室规模的装置中,使用不锈钢反应器和世伟洛克双端管进行了中间热解,产生的热解油可用于分析。近似分析显示,木薯皮(CP)的灰分含量为 9.23 wt%,稻壳(RH)的灰分含量为 16.50 wt%,而木薯皮和稻壳的组合样品(CS)的灰分含量为 74.27 wt%,固定碳为 70.07 wt%,挥发物为 75.72 wt%。木薯皮、稻壳和混合样品的加热值分别为 17.15 兆焦/千克、15.22 兆焦/千克和 17.06 兆焦/千克。最终分析表明了以下元素组成:CP(40.95 % C、5.67 % H、0.22 % N、0.09 % S、52.17 % O2)、RH(40.15 % C、5.98 % H、0.41 % N、0.78 % S、52.68 % O2)和 CS(43.06 % C、6.41 % H、0.32 % N、0.41 % S、49.80 % O2)。分布式活化能模型的动力学和热力学分析表明,平均活化能分别为 184.95 kJ/mol(CP)、140.56 kJ/mol(RH)和 125.63 kJ/mol(CS)。热解产物包括 37.50 wt% 的热解油、11.12 wt% 的生物炭和 51.38 wt% 的不凝性气体。热解油的气相色谱-质谱分析确定了大量的碳氢化合物、酚类和酚类衍生物,表明其具有生产生物燃料的潜力。这项研究强调了将生物质资源用于生物燃料生产和变废为宝的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信