Upgrading the functional properties of apricot kernel proteins through fibrillization

IF 11 1区 农林科学 Q1 CHEMISTRY, APPLIED
Shuangjian Li, Xihua Liu, Yapeng Fang, Yiping Cao
{"title":"Upgrading the functional properties of apricot kernel proteins through fibrillization","authors":"Shuangjian Li,&nbsp;Xihua Liu,&nbsp;Yapeng Fang,&nbsp;Yiping Cao","doi":"10.1016/j.foodhyd.2024.110872","DOIUrl":null,"url":null,"abstract":"<div><div>Apricot kernel meal is an understudied and underutilized by-product of the apricot industry. In this study, apricot kernel protein (AKP) was obtained from apricot kernel meal by a simple one-step salting-in method, exhibiting high yield (38.4 g AKP/100 g defatted meal), high protein content (91.4%), and high solubility (92.5% at neutral pHs). The possibility and kinetics of AKP fibrillization were further investigated. It was found that apricot kernel protein amyloid fibrils (AKPFs) with twisted nanofibrillar structures were readily formed by heating at pH 2.0 and 90 °C. SDS-PAGE analysis indicated that these AKPFs contained peptide fragments with the molecular weight of around 6.5 kDa. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), circular dichroism spectroscopy (CD) and intrinsic fluorescence spectroscopy revealed that the structure, morphology and properties of AKPFs were analogous to other food protein-derived amyloid fibrils. Importantly, AKPF has upgraded foaming characteristics, e.g., AKPF-18h (AKPF formed at 18 h) has 31.7% higher foaming capacity and 30.2% higher foam stability relative to AKP. This is attributed to the formation of a homogeneous interfacial film at the air/water interface of the foam. The DPPH radical scavenging activity of AKPF-18h was also improved, reaching 53.0%, about twice that of AKP (28.4%). In addition, the developed AKP and AKPFs were not cytotoxic in vitro. All these findings suggest that AKPFs have great potential for future food applications.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"161 ","pages":"Article 110872"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24011469","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Apricot kernel meal is an understudied and underutilized by-product of the apricot industry. In this study, apricot kernel protein (AKP) was obtained from apricot kernel meal by a simple one-step salting-in method, exhibiting high yield (38.4 g AKP/100 g defatted meal), high protein content (91.4%), and high solubility (92.5% at neutral pHs). The possibility and kinetics of AKP fibrillization were further investigated. It was found that apricot kernel protein amyloid fibrils (AKPFs) with twisted nanofibrillar structures were readily formed by heating at pH 2.0 and 90 °C. SDS-PAGE analysis indicated that these AKPFs contained peptide fragments with the molecular weight of around 6.5 kDa. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), circular dichroism spectroscopy (CD) and intrinsic fluorescence spectroscopy revealed that the structure, morphology and properties of AKPFs were analogous to other food protein-derived amyloid fibrils. Importantly, AKPF has upgraded foaming characteristics, e.g., AKPF-18h (AKPF formed at 18 h) has 31.7% higher foaming capacity and 30.2% higher foam stability relative to AKP. This is attributed to the formation of a homogeneous interfacial film at the air/water interface of the foam. The DPPH radical scavenging activity of AKPF-18h was also improved, reaching 53.0%, about twice that of AKP (28.4%). In addition, the developed AKP and AKPFs were not cytotoxic in vitro. All these findings suggest that AKPFs have great potential for future food applications.

Abstract Image

通过纤维化提升杏核蛋白的功能特性
杏核粉是杏产业中一种未得到充分研究和利用的副产品。本研究采用简单的一步盐渍法从杏核粉中获得了杏核蛋白(AKP),其产量高(38.4 克 AKP/100 克脱脂粉)、蛋白质含量高(91.4%)、溶解度高(中性 pH 值下为 92.5%)。对 AKP 纤维化的可能性和动力学进行了进一步研究。研究发现,在 pH 值为 2.0、温度为 90 °C 的条件下加热,很容易形成具有扭曲纳米纤维结构的杏核蛋白淀粉样纤维(AKPFs)。SDS-PAGE 分析表明,这些 AKPFs 含有分子量约为 6.5 kDa 的肽片段。原子力显微镜(AFM)、傅立叶变换红外光谱(FTIR)、圆二色光谱(CD)和本征荧光光谱显示,AKPFs 的结构、形态和性质与其他食物蛋白衍生的淀粉样纤维相似。重要的是,AKPF 具有升级的发泡特性,例如,与 AKP 相比,AKPF-18h(在 18 小时内形成的 AKPF)的发泡能力高 31.7%,泡沫稳定性高 30.2%。这归因于在泡沫的空气/水界面上形成了一层均匀的界面膜。AKPF-18h 的 DPPH 自由基清除活性也有所提高,达到 53.0%,约为 AKP(28.4%)的两倍。此外,开发的 AKP 和 AKPF 在体外没有细胞毒性。所有这些发现都表明,AKPFs 在未来的食品应用中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Hydrocolloids
Food Hydrocolloids 工程技术-食品科技
CiteScore
19.90
自引率
14.00%
发文量
871
审稿时长
37 days
期刊介绍: Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication. The main areas of interest are: -Chemical and physicochemical characterisation Thermal properties including glass transitions and conformational changes- Rheological properties including viscosity, viscoelastic properties and gelation behaviour- The influence on organoleptic properties- Interfacial properties including stabilisation of dispersions, emulsions and foams- Film forming properties with application to edible films and active packaging- Encapsulation and controlled release of active compounds- The influence on health including their role as dietary fibre- Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes- New hydrocolloids and hydrocolloid sources of commercial potential. The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信