{"title":"Quantitative benefits of geocells in controlling liquefaction in sands","authors":"Prerana Krishnaraj, Gali Madhavi Latha","doi":"10.1016/j.soildyn.2024.109098","DOIUrl":null,"url":null,"abstract":"<div><div>Geocells have become an integral part of many geosystems like road and railway embankments, retaining walls and foundations, attributed to their multiple merits in terms of stability and strength, but their contributions towards liquefaction mitigation are unknown. The present study aims to understand the role of geocell reinforcement on the liquefaction and post-liquefaction shear response of saturated sands through monotonic and cyclic triaxial tests. Low-strength geocells of required physical and mechanical properties were fabricated through ultrasonic welding of 3D printed polypropylene (PP) sheets. The liquefaction benefits of including a single geocell in sand were quantified in terms of the reduction in pore water pressure, retardation in stiffness degradation and delay in the retardation of effective stress. In general, the inclusion of geocells delayed liquefaction, with higher beneficial effects at lower initial confining pressure, higher cyclic strain amplitude and higher cyclic loading frequency. The maximum benefit measured in terms of percentage rise in the number of cycles needed to liquefy was calculated to be about 230 %. Geocell reinforcement also helped in the quick regain of post-liquefaction shear strength and stiffness.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109098"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026772612400650X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Geocells have become an integral part of many geosystems like road and railway embankments, retaining walls and foundations, attributed to their multiple merits in terms of stability and strength, but their contributions towards liquefaction mitigation are unknown. The present study aims to understand the role of geocell reinforcement on the liquefaction and post-liquefaction shear response of saturated sands through monotonic and cyclic triaxial tests. Low-strength geocells of required physical and mechanical properties were fabricated through ultrasonic welding of 3D printed polypropylene (PP) sheets. The liquefaction benefits of including a single geocell in sand were quantified in terms of the reduction in pore water pressure, retardation in stiffness degradation and delay in the retardation of effective stress. In general, the inclusion of geocells delayed liquefaction, with higher beneficial effects at lower initial confining pressure, higher cyclic strain amplitude and higher cyclic loading frequency. The maximum benefit measured in terms of percentage rise in the number of cycles needed to liquefy was calculated to be about 230 %. Geocell reinforcement also helped in the quick regain of post-liquefaction shear strength and stiffness.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.