Using percolation to design ZnO composites with hBN modified grain boundaries to obtain varistor-like behavior

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS
Michael W. Mervosh , Sevag Momjian , Javier Mena-Garcia , Clive A. Randall
{"title":"Using percolation to design ZnO composites with hBN modified grain boundaries to obtain varistor-like behavior","authors":"Michael W. Mervosh ,&nbsp;Sevag Momjian ,&nbsp;Javier Mena-Garcia ,&nbsp;Clive A. Randall","doi":"10.1016/j.oceram.2024.100707","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional varistors rely on the formation of a Double Schottky Barrier within the intergranular region of ZnO via acceptor doping and a Bi<sub>2</sub>O<sub>3</sub> phase. This work has been able to yield varistor-like behavior via cold sintered ZnO composites by placing 2D hBN flakes on the grain boundaries within the ZnO matrix. Above the percolation threshold, a network of resistive hBN barriers is formed which prevents current from flowing through the more conductive ZnO. However, at a given voltage, electrons can tunnel through the hBN if the layers are kept thin enough. Within this narrow band of hBN content, samples have been fabricated with α values as high as 9.5. The composite system demonstrated Schottky conduction at low fields before switching to Fowler-Nordheim tunneling at high fields. This microstructural design was able to show greater nonlinearity compared to previous attempts at creating varistor materials through the unique cold sintering process (CSP).</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100707"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional varistors rely on the formation of a Double Schottky Barrier within the intergranular region of ZnO via acceptor doping and a Bi2O3 phase. This work has been able to yield varistor-like behavior via cold sintered ZnO composites by placing 2D hBN flakes on the grain boundaries within the ZnO matrix. Above the percolation threshold, a network of resistive hBN barriers is formed which prevents current from flowing through the more conductive ZnO. However, at a given voltage, electrons can tunnel through the hBN if the layers are kept thin enough. Within this narrow band of hBN content, samples have been fabricated with α values as high as 9.5. The composite system demonstrated Schottky conduction at low fields before switching to Fowler-Nordheim tunneling at high fields. This microstructural design was able to show greater nonlinearity compared to previous attempts at creating varistor materials through the unique cold sintering process (CSP).

Abstract Image

利用渗滤技术设计具有氢化萘修饰晶界的氧化锌复合材料,以获得类似压敏电阻的性能
传统变阻器依赖于通过掺杂受体和 Bi2O3 相在氧化锌晶间区形成双肖特基势垒。这项研究通过在氧化锌基体的晶界上放置二维 hBN 片,在冷烧结氧化锌复合材料中产生了类似变阻器的行为。在渗流阈值以上,会形成一个阻性氢化硼壁垒网络,阻止电流流过导电性更强的氧化锌。但是,在给定电压下,如果层足够薄,电子就能隧穿氢化硼。在这一狭窄的 hBN 含量范围内,已制造出 α 值高达 9.5 的样品。该复合系统在低电场时表现出肖特基传导,而在高电场时则转为福勒-诺德海姆隧道效应。与之前通过独特的冷烧结工艺(CSP)制造变阻器材料的尝试相比,这种微结构设计能够显示出更大的非线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信