Michael W. Mervosh , Sevag Momjian , Javier Mena-Garcia , Clive A. Randall
{"title":"Using percolation to design ZnO composites with hBN modified grain boundaries to obtain varistor-like behavior","authors":"Michael W. Mervosh , Sevag Momjian , Javier Mena-Garcia , Clive A. Randall","doi":"10.1016/j.oceram.2024.100707","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional varistors rely on the formation of a Double Schottky Barrier within the intergranular region of ZnO via acceptor doping and a Bi<sub>2</sub>O<sub>3</sub> phase. This work has been able to yield varistor-like behavior via cold sintered ZnO composites by placing 2D hBN flakes on the grain boundaries within the ZnO matrix. Above the percolation threshold, a network of resistive hBN barriers is formed which prevents current from flowing through the more conductive ZnO. However, at a given voltage, electrons can tunnel through the hBN if the layers are kept thin enough. Within this narrow band of hBN content, samples have been fabricated with α values as high as 9.5. The composite system demonstrated Schottky conduction at low fields before switching to Fowler-Nordheim tunneling at high fields. This microstructural design was able to show greater nonlinearity compared to previous attempts at creating varistor materials through the unique cold sintering process (CSP).</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100707"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional varistors rely on the formation of a Double Schottky Barrier within the intergranular region of ZnO via acceptor doping and a Bi2O3 phase. This work has been able to yield varistor-like behavior via cold sintered ZnO composites by placing 2D hBN flakes on the grain boundaries within the ZnO matrix. Above the percolation threshold, a network of resistive hBN barriers is formed which prevents current from flowing through the more conductive ZnO. However, at a given voltage, electrons can tunnel through the hBN if the layers are kept thin enough. Within this narrow band of hBN content, samples have been fabricated with α values as high as 9.5. The composite system demonstrated Schottky conduction at low fields before switching to Fowler-Nordheim tunneling at high fields. This microstructural design was able to show greater nonlinearity compared to previous attempts at creating varistor materials through the unique cold sintering process (CSP).