{"title":"Integrating microplastic management into a broader wastewater decision-making framework. Is activated granular sludge (AGS) a game changer?","authors":"Andre Torre, Ian Vázquez-Rowe, Ramzy Kahhat","doi":"10.1016/j.jwpe.2024.106624","DOIUrl":null,"url":null,"abstract":"<div><div>Wastewater treatment plants (WWTPs) are not specifically designed to tackle microplastics (MPs), leaving them in aquatic ecosystems. The novelty of our study is a critical review of the effectiveness of conventional activated sludge (CAS), membrane bioreactors (MBRs), and activated granular sludge (AGS) in managing MPs within WWTPs. We bridge a gap in scientific literature by assessing MP removal and resilience to MPs. Our scope extends beyond MPs management, evaluating these technologies against environmental, economic, and social criteria. Findings show that MBR outperforms CAS and AGS in MP removal but faces challenges with smaller MPs due to fouling and secondary pollution. AGS shows similar removal rates to CAS but often superior resilience to MPs, given its higher decontamination capabilities. Environmentally, AGS may better reduce indirect greenhouse gas (GHG) emissions due to lower energy and chemical demands. Moreover, AGS exhibits higher resource recovery potential (e.g., biopolymers, phosphates). Socially, MBR excels in pathogen removal, reducing waterborne disease risks. Economically, AGS is the most cost-effective technology regarding both operational and capital expenditures. However, MPs can impact these criteria by reducing nutrient removal efficiency and increasing both direct and indirect GHGs. MPs create “plastisphere” habitats, reducing pathogen removal and compromising water safety. Moreover, MPs increase energy and chemical use, especially in MBR systems due to fouling concerns.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"69 ","pages":"Article 106624"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424018567","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater treatment plants (WWTPs) are not specifically designed to tackle microplastics (MPs), leaving them in aquatic ecosystems. The novelty of our study is a critical review of the effectiveness of conventional activated sludge (CAS), membrane bioreactors (MBRs), and activated granular sludge (AGS) in managing MPs within WWTPs. We bridge a gap in scientific literature by assessing MP removal and resilience to MPs. Our scope extends beyond MPs management, evaluating these technologies against environmental, economic, and social criteria. Findings show that MBR outperforms CAS and AGS in MP removal but faces challenges with smaller MPs due to fouling and secondary pollution. AGS shows similar removal rates to CAS but often superior resilience to MPs, given its higher decontamination capabilities. Environmentally, AGS may better reduce indirect greenhouse gas (GHG) emissions due to lower energy and chemical demands. Moreover, AGS exhibits higher resource recovery potential (e.g., biopolymers, phosphates). Socially, MBR excels in pathogen removal, reducing waterborne disease risks. Economically, AGS is the most cost-effective technology regarding both operational and capital expenditures. However, MPs can impact these criteria by reducing nutrient removal efficiency and increasing both direct and indirect GHGs. MPs create “plastisphere” habitats, reducing pathogen removal and compromising water safety. Moreover, MPs increase energy and chemical use, especially in MBR systems due to fouling concerns.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies