Chuang Li, Li Sun, Zhaoqi Liu, Kai Wang, Weidong Yan
{"title":"Structural damage identification and experiment based on FBG sensors and PCA-KNN approach","authors":"Chuang Li, Li Sun, Zhaoqi Liu, Kai Wang, Weidong Yan","doi":"10.1016/j.yofte.2024.104062","DOIUrl":null,"url":null,"abstract":"<div><div>Structural damage has the characteristics of concealment and low response, therefore, how to improve the accuracy and stability of damage identification has always been a challenge for the researchers. An innovative approach (PCA-KNN) for structural damage identification and anomaly localization was proposed based on monitoring data. Firstly, traditional principal component analysis (PCA) was completed on the monitoring data matrix with taking into account the contribution of error subspaces. Secondly, the sigmoid function was assigned corresponding weights in terms of the sensitivity of the principal components. Finally, the comprehensive differential index was developed with the K-Nearest Neighbor (KNN) algorithm for less noise interference. In terms of sensor monitoring, the wide range FBG strain sensor and FBG tilt sensor were developed to perceive structural mechanical parameters. The innovative approach and sensors were applied to the benchmark model of Base Excited 3-Story Structure and shaking table testing to implement the comprehensive index calculation, which could effectively identify structural damage with abnormal monitoring data from the sensor nearby. Through comparison and analysis, the new technology could promote the ability of quantitative damage identification and localization.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"89 ","pages":"Article 104062"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024004073","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Structural damage has the characteristics of concealment and low response, therefore, how to improve the accuracy and stability of damage identification has always been a challenge for the researchers. An innovative approach (PCA-KNN) for structural damage identification and anomaly localization was proposed based on monitoring data. Firstly, traditional principal component analysis (PCA) was completed on the monitoring data matrix with taking into account the contribution of error subspaces. Secondly, the sigmoid function was assigned corresponding weights in terms of the sensitivity of the principal components. Finally, the comprehensive differential index was developed with the K-Nearest Neighbor (KNN) algorithm for less noise interference. In terms of sensor monitoring, the wide range FBG strain sensor and FBG tilt sensor were developed to perceive structural mechanical parameters. The innovative approach and sensors were applied to the benchmark model of Base Excited 3-Story Structure and shaking table testing to implement the comprehensive index calculation, which could effectively identify structural damage with abnormal monitoring data from the sensor nearby. Through comparison and analysis, the new technology could promote the ability of quantitative damage identification and localization.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.