Deep level defect passivation for printable mesoporous CsSnI3 perovskite solar cells with efficiency above 10%

IF 13.1 1区 化学 Q1 Energy
Haixuan Yu , Zhiguo Zhang , Huaxia Ban , Xiongjie Li , Zhirong Liu , Junyi Huang , Wanpeng Yang , Yan Shen , Mingkui Wang
{"title":"Deep level defect passivation for printable mesoporous CsSnI3 perovskite solar cells with efficiency above 10%","authors":"Haixuan Yu ,&nbsp;Zhiguo Zhang ,&nbsp;Huaxia Ban ,&nbsp;Xiongjie Li ,&nbsp;Zhirong Liu ,&nbsp;Junyi Huang ,&nbsp;Wanpeng Yang ,&nbsp;Yan Shen ,&nbsp;Mingkui Wang","doi":"10.1016/j.jechem.2024.10.033","DOIUrl":null,"url":null,"abstract":"<div><div>The lead-free inorganic perovskite CsSnI<sub>3</sub> is considered as one of the best candidates for emerging photovoltaics. Nevertheless, CsSnI<sub>3</sub>-based perovskite solar cells experience a significant drop in performance due to the nonradiative recombination facilitated by trapping. Here, we show an electron donor passivation method to regulate deep-level defects for CsSnI<sub>3</sub> perovskite with electron donor pyrrole. Experimental observations combined with theoretical simulations verify that the saturation of Tin dangling bonds with pyrrole on the CsSnI<sub>3</sub> surface via a Lewis acid-base addition reaction can significantly reduce the density of deep-level defects. Consequently, the printable mesoporous perovskite solar cells with an FTO/compact-TiO<sub>2</sub>/mesoporous-TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>/NiO/carbon framework device structure penetrated with CsSnI<sub>3</sub> achieve a power conversion efficiency of up to 10.11%. To our knowledge, this represents the highest efficiency reported to date for lead-free perovskite-based printable mesoporous solar cells. Furthermore, the unencapsulated devices demonstrated remarkable long-term stability, retaining 92% of their initial efficiency even after 2400 h of aging in a nitrogen atmosphere.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 10-17"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007381","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The lead-free inorganic perovskite CsSnI3 is considered as one of the best candidates for emerging photovoltaics. Nevertheless, CsSnI3-based perovskite solar cells experience a significant drop in performance due to the nonradiative recombination facilitated by trapping. Here, we show an electron donor passivation method to regulate deep-level defects for CsSnI3 perovskite with electron donor pyrrole. Experimental observations combined with theoretical simulations verify that the saturation of Tin dangling bonds with pyrrole on the CsSnI3 surface via a Lewis acid-base addition reaction can significantly reduce the density of deep-level defects. Consequently, the printable mesoporous perovskite solar cells with an FTO/compact-TiO2/mesoporous-TiO2/Al2O3/NiO/carbon framework device structure penetrated with CsSnI3 achieve a power conversion efficiency of up to 10.11%. To our knowledge, this represents the highest efficiency reported to date for lead-free perovskite-based printable mesoporous solar cells. Furthermore, the unencapsulated devices demonstrated remarkable long-term stability, retaining 92% of their initial efficiency even after 2400 h of aging in a nitrogen atmosphere.

Abstract Image

可印刷介孔 CsSnI3 包晶石太阳能电池的深层次缺陷钝化,效率超过 10
无铅无机包晶体 CsSnI3 被认为是新兴光伏技术的最佳候选材料之一。然而,由于捕集作用导致的非辐射性重组,基于 CsSnI3 的包晶太阳能电池的性能显著下降。在这里,我们展示了一种电子供体钝化方法,可以用电子供体吡咯来调节 CsSnI3 包晶体的深层次缺陷。实验观察结合理论模拟验证了通过路易斯酸碱加成反应使 CsSnI3 表面的锡悬键与吡咯饱和,可以显著降低深层缺陷的密度。因此,采用 FTO/compact-TiO2/mesoporous-TiO2/Al2O3/NiO/carbon 框架器件结构并穿透 CsSnI3 的可印刷介孔过氧化物太阳能电池的功率转换效率高达 10.11%。据我们所知,这是迄今为止报道的基于无铅过氧化物的可印刷介孔太阳能电池的最高效率。此外,未封装器件还表现出显著的长期稳定性,即使在氮气环境中老化 2400 小时后,仍能保持 92% 的初始效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信