Breaking boundaries in O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries: An industrially scalable reheating strategy for superior electrochemical performance

IF 13.1 1区 化学 Q1 Energy
Manman Chen , Cai Zhao , Yan Li , Hui Wang , Kaihang Wang , Shengchen Yang , Yue Gao , Wenjuan Zhang , Chun Chen , Tao Zhang , Lei Wen , Kehua Dai , Jing Mao
{"title":"Breaking boundaries in O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries: An industrially scalable reheating strategy for superior electrochemical performance","authors":"Manman Chen ,&nbsp;Cai Zhao ,&nbsp;Yan Li ,&nbsp;Hui Wang ,&nbsp;Kaihang Wang ,&nbsp;Shengchen Yang ,&nbsp;Yue Gao ,&nbsp;Wenjuan Zhang ,&nbsp;Chun Chen ,&nbsp;Tao Zhang ,&nbsp;Lei Wen ,&nbsp;Kehua Dai ,&nbsp;Jing Mao","doi":"10.1016/j.jechem.2024.10.038","DOIUrl":null,"url":null,"abstract":"<div><div>To address the challenges of air stability and slurry processability in layered transition metal oxide O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NFM) for sodium-ion batteries (SIBs), we have designed an innovative 500 °C reheating strategy. This method improves the surface properties of NFM without the need for additional coating layers, making it more efficient and suitable for large-scale applications. Pristine NFM (NFM-P) was first synthesized through a high-temperature solid-state method and then modified using this reheating approach (NFM-HT). This strategy significantly enhances air stability and electrochemical performance, yielding an initial discharge specific capacity of 151.46 mAh/g at 0.1C, with a remarkable capacity retention of 95.04% after 100 cycles at 0.5C. Additionally, a 1.7 Ah NFM||HC (hard carbon) pouch cell demonstrates excellent long-term cycling stability (94.64% retention after 500 cycles at 1C), superior rate capability (86.48% retention at 9C), and strong low-temperature performance (77% retention at − 25 °C, continuing power supply at − 40 °C). Notably, even when overcharged to 8.29 V, the pouch cell remained safe without combustion or explosion. This reheating strategy, which eliminates the need for a coating layer, offers a simpler, more scalable solution for industrial production while maintaining outstanding electrochemical performance. These results pave the way for broader commercial adoption of NFM materials.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 107-119"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007435","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenges of air stability and slurry processability in layered transition metal oxide O3-type NaNi1/3Fe1/3Mn1/3O2 (NFM) for sodium-ion batteries (SIBs), we have designed an innovative 500 °C reheating strategy. This method improves the surface properties of NFM without the need for additional coating layers, making it more efficient and suitable for large-scale applications. Pristine NFM (NFM-P) was first synthesized through a high-temperature solid-state method and then modified using this reheating approach (NFM-HT). This strategy significantly enhances air stability and electrochemical performance, yielding an initial discharge specific capacity of 151.46 mAh/g at 0.1C, with a remarkable capacity retention of 95.04% after 100 cycles at 0.5C. Additionally, a 1.7 Ah NFM||HC (hard carbon) pouch cell demonstrates excellent long-term cycling stability (94.64% retention after 500 cycles at 1C), superior rate capability (86.48% retention at 9C), and strong low-temperature performance (77% retention at − 25 °C, continuing power supply at − 40 °C). Notably, even when overcharged to 8.29 V, the pouch cell remained safe without combustion or explosion. This reheating strategy, which eliminates the need for a coating layer, offers a simpler, more scalable solution for industrial production while maintaining outstanding electrochemical performance. These results pave the way for broader commercial adoption of NFM materials.

Abstract Image

打破钠离子电池用 O3 型 NaNi1/3Fe1/3Mn1/3O2 正极材料的界限:实现卓越电化学性能的工业化可扩展再加热策略
为了解决用于钠离子电池(SIB)的层状过渡金属氧化物 O3 型 NaNi1/3Fe1/3Mn1/3O2 (NFM) 在空气稳定性和浆料加工性方面的难题,我们设计了一种创新的 500 °C 再加热策略。这种方法无需额外的涂层层就能改善 NFM 的表面特性,使其更高效,更适合大规模应用。原始 NFM(NFM-P)首先是通过高温固态方法合成的,然后使用这种再加热方法(NFM-HT)进行改性。这种策略大大提高了空气稳定性和电化学性能,在 0.1C 下的初始放电比容量为 151.46 mAh/g,在 0.5C 下循环 100 次后,容量保持率高达 95.04%。此外,1.7 Ah NFM||HC(硬碳)袋装电池表现出卓越的长期循环稳定性(在 1C 下循环 500 次后保持 94.64%)、出色的速率能力(在 9C 下保持 86.48%)和强大的低温性能(在 -25 °C 下保持 77%,在 -40 °C 下持续供电)。值得注意的是,即使过充至 8.29 V,袋式电池仍能保持安全,不会发生燃烧或爆炸。这种再加热策略无需涂层,为工业生产提供了一种更简单、更可扩展的解决方案,同时还能保持出色的电化学性能。这些成果为更广泛地商业化采用 NFM 材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信