Ultrastrong nonflammable in-situ polymer electrolyte with enhanced interface stability boosting high-voltage Li metal batteries under harsh conditions

IF 13.1 1区 化学 Q1 Energy
Lisi Xu , Xuan Wang , Yilu Wu , Chaoyang Li , Kuirong Deng , Zhenhua Yan
{"title":"Ultrastrong nonflammable in-situ polymer electrolyte with enhanced interface stability boosting high-voltage Li metal batteries under harsh conditions","authors":"Lisi Xu ,&nbsp;Xuan Wang ,&nbsp;Yilu Wu ,&nbsp;Chaoyang Li ,&nbsp;Kuirong Deng ,&nbsp;Zhenhua Yan","doi":"10.1016/j.jechem.2024.10.040","DOIUrl":null,"url":null,"abstract":"<div><div>In-situ polymer electrolytes prepared by Li salt-initiated polymerization are promising electrolytes for solid-state Li metal batteries owing to their enhanced interface contact and facile and green preparation process. However, conventional in-situ polymer electrolytes suffer from poor interface stability, low mechanical strength, low oxidation stability, and certain flammability. Herein, a silsesquioxane (POSS)-nanocage-crosslinked in-situ polymer electrolyte (POSS-DOL@PI-F) regulated by fluorinated plasticizer and enhanced by polyimide skeleton is fabricated by Li salt initiated in-situ polymerization. Polyimide skeleton and POSS-nanocage-crosslinked network significantly enhance the tensile strength (22.8 MPa) and thermal stability (200 °C) of POSS-DOL@PI-F. Fluorinated plasticizer improves ionic conductivity (6.83 × 10<sup>−4</sup> S cm<sup>−1</sup>), flame retardance, and oxidation stability (5.0 V) of POSS-DOL@PI-F. The fluorinated plasticizer of POSS-DOL@PI-F constructs robust LiF-rich solid electrolyte interphases and cathode electrolyte interphases, thereby dramatically enhancing the interface stability of Li metal anodes and LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NCM811) cathodes. POSS-DOL@PI-F enables stable, long-term (1200 h), and dendrite-free cycle of Li||Li cells. POSS-DOL@PI-F significantly boosts the performance of Li||NCM811 cells, which display superior cycle stability under harsh conditions of high voltage (4.5 V), high temperature (60 °C), low temperature (−20 °C), and high areal capacity. This work provides a rational design strategy for safe and efficient polymer electrolytes.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 63-72"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007459","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

In-situ polymer electrolytes prepared by Li salt-initiated polymerization are promising electrolytes for solid-state Li metal batteries owing to their enhanced interface contact and facile and green preparation process. However, conventional in-situ polymer electrolytes suffer from poor interface stability, low mechanical strength, low oxidation stability, and certain flammability. Herein, a silsesquioxane (POSS)-nanocage-crosslinked in-situ polymer electrolyte (POSS-DOL@PI-F) regulated by fluorinated plasticizer and enhanced by polyimide skeleton is fabricated by Li salt initiated in-situ polymerization. Polyimide skeleton and POSS-nanocage-crosslinked network significantly enhance the tensile strength (22.8 MPa) and thermal stability (200 °C) of POSS-DOL@PI-F. Fluorinated plasticizer improves ionic conductivity (6.83 × 10−4 S cm−1), flame retardance, and oxidation stability (5.0 V) of POSS-DOL@PI-F. The fluorinated plasticizer of POSS-DOL@PI-F constructs robust LiF-rich solid electrolyte interphases and cathode electrolyte interphases, thereby dramatically enhancing the interface stability of Li metal anodes and LiNi0.8Mn0.1Co0.1O2 (NCM811) cathodes. POSS-DOL@PI-F enables stable, long-term (1200 h), and dendrite-free cycle of Li||Li cells. POSS-DOL@PI-F significantly boosts the performance of Li||NCM811 cells, which display superior cycle stability under harsh conditions of high voltage (4.5 V), high temperature (60 °C), low temperature (−20 °C), and high areal capacity. This work provides a rational design strategy for safe and efficient polymer electrolytes.

Abstract Image

超强不易燃原位聚合物电解质具有更高的界面稳定性,可在恶劣条件下促进高压锂金属电池的发展
通过锂盐引发聚合制备的原位聚合物电解质具有界面接触性强、制备过程简便且绿色环保等优点,是固态锂金属电池的理想电解质。然而,传统的原位聚合物电解质存在界面稳定性差、机械强度低、氧化稳定性低和易燃性等问题。本文通过锂盐引发的原位聚合,制备了一种由氟增塑剂调节、聚酰亚胺骨架增强的硅倍半氧烷(POSS)-纳米交联原位聚合物电解质(POSS-DOL@PI-F)。聚酰亚胺骨架和 POSS 纳米交联网络显著提高了 POSS-DOL@PI-F 的拉伸强度(22.8 兆帕)和热稳定性(200 °C)。含氟增塑剂提高了 POSS-DOL@PI-F 的离子传导性(6.83 × 10-4 S cm-1)、阻燃性和氧化稳定性(5.0 V)。POSS-DOL@PI-F 的氟化增塑剂构建了坚固的富含 LiF 的固体电解质相间层和阴极电解质相间层,从而显著提高了锂金属阳极和 LiNi0.8Mn0.1Co0.1O2 (NCM811) 阴极的界面稳定性。POSS-DOL@PI-F 实现了锂电池的稳定、长期(1200 小时)和无枝晶循环。POSS-DOL@PI-F 显著提高了 NCM811 电池的性能,使其在高压(4.5 V)、高温(60 °C)、低温(-20 °C)和高倍率容量等苛刻条件下显示出卓越的循环稳定性。这项工作为安全高效的聚合物电解质提供了合理的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信