Mengyu Rong , Yifu Zhang , Xianfang Tan , Yang Wang , Na Gao , Chi Huang , Changgong Meng
{"title":"Breath inspired multifunctional low-cost inorganic colloidal electrolyte for stable zinc metal anode","authors":"Mengyu Rong , Yifu Zhang , Xianfang Tan , Yang Wang , Na Gao , Chi Huang , Changgong Meng","doi":"10.1016/j.jechem.2024.10.049","DOIUrl":null,"url":null,"abstract":"<div><div>The practical application of aqueous zinc-ion batteries (AZIBs) is primarily constrained by issues such as corrosion, zinc dendrite formation, and the hydrogen evolution reaction occurring at the zinc metal anode. To overcome these challenges, strategies for optimizing the electrolyte are crucial for enhancing the stability of the zinc anode. Inspired by the role of hemoglobin in blood cells, which facilitates oxygen transport during human respiration, an innovative inorganic colloidal electrolyte has been developed: calcium silicate-ZnSO<sub>4</sub> (denoted as CS-ZSO). This electrolyte operates in weak acidic environment and releases calcium ions, which participate in homotopic substitution with zinc ions, while the solvation environment of hydrated zinc ions in the electrolyte is regulated. The reduced energy barrier for the transfer of zinc ions and the energy barrier for the desolvation of hydrated ions imply faster ion transfer kinetics and accelerated desolvation processes, thus favoring the mass transfer process. Furthermore, the silicate colloidal particles act as lubricants, improving the transfer of zinc ions. Together, these factors contribute to the more uniform concentration of zinc ions at the electrode/electrolyte interface, effectively inhibiting zinc dendrite formation and reducing by-product accumulation. The Zn//CS-ZSO//Zn symmetric cell demonstrates stable operation for over 5000 h at 1 mA cm<sup>−2</sup>, representing 29-fold improvement compared to the Zn//ZSO//Zn symmetric cell, which lasts only 170 h. Additionally, the Zn//CS-ZSO//Cu asymmetric cell shows stable average Coulombic efficiency (CE) exceeding 99.6% over 2400 cycles, significantly surpassing the performance of the ZSO electrolyte. This modification strategy for electrolytes not only addresses key limitations associated with zinc anodes but also provides valuable insights into stabilizing anodes for the advancement of high-performance aqueous zinc-ion energy storage systems.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 218-229"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562400754X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
The practical application of aqueous zinc-ion batteries (AZIBs) is primarily constrained by issues such as corrosion, zinc dendrite formation, and the hydrogen evolution reaction occurring at the zinc metal anode. To overcome these challenges, strategies for optimizing the electrolyte are crucial for enhancing the stability of the zinc anode. Inspired by the role of hemoglobin in blood cells, which facilitates oxygen transport during human respiration, an innovative inorganic colloidal electrolyte has been developed: calcium silicate-ZnSO4 (denoted as CS-ZSO). This electrolyte operates in weak acidic environment and releases calcium ions, which participate in homotopic substitution with zinc ions, while the solvation environment of hydrated zinc ions in the electrolyte is regulated. The reduced energy barrier for the transfer of zinc ions and the energy barrier for the desolvation of hydrated ions imply faster ion transfer kinetics and accelerated desolvation processes, thus favoring the mass transfer process. Furthermore, the silicate colloidal particles act as lubricants, improving the transfer of zinc ions. Together, these factors contribute to the more uniform concentration of zinc ions at the electrode/electrolyte interface, effectively inhibiting zinc dendrite formation and reducing by-product accumulation. The Zn//CS-ZSO//Zn symmetric cell demonstrates stable operation for over 5000 h at 1 mA cm−2, representing 29-fold improvement compared to the Zn//ZSO//Zn symmetric cell, which lasts only 170 h. Additionally, the Zn//CS-ZSO//Cu asymmetric cell shows stable average Coulombic efficiency (CE) exceeding 99.6% over 2400 cycles, significantly surpassing the performance of the ZSO electrolyte. This modification strategy for electrolytes not only addresses key limitations associated with zinc anodes but also provides valuable insights into stabilizing anodes for the advancement of high-performance aqueous zinc-ion energy storage systems.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy