Intercomparison of radar data assimilation systems for snowfall cases during the ICE-POP 2018

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Ji-Won Lee , Ki-Hong Min , Kao-Shen Chung , Cheng-Rong You , Chieh-Ying Ke , GyuWon Lee
{"title":"Intercomparison of radar data assimilation systems for snowfall cases during the ICE-POP 2018","authors":"Ji-Won Lee ,&nbsp;Ki-Hong Min ,&nbsp;Kao-Shen Chung ,&nbsp;Cheng-Rong You ,&nbsp;Chieh-Ying Ke ,&nbsp;GyuWon Lee","doi":"10.1016/j.atmosres.2024.107804","DOIUrl":null,"url":null,"abstract":"<div><div>This study compares two data assimilation (DA) methods, the Local Ensemble Transform Kalman Filter (LETKF) and three-dimensional variational analysis (3DVAR), in the assimilation of high-resolution three-dimensional remote sensing data. Different observation operators are applied to each DA method to reflect its specific characteristics and to provide best analysis for precipitation forecast over complex terrain. Since radial velocity has a linear relationship with wind components, it applies relatively easily to both DA methods. However, reflectivity has a nonlinear relationship with model state variables and LETKF applies direct DA, while 3DVAR uses indirect DA. A detailed analysis of two specific snowfall cases using ICE-POP 2018 observational data reveals significant differences in wind field changes. In 3DVAR, strong convergence on the windward side and the rapid growth of water vapor into hydrometeors during the forecast period lead to an overestimation of precipitation. In contrast, LETKF improves the simulation of airflow over mountains and enhances precipitation accuracy, attributed to the background error covariance matrix and observation operator. For accurate winter precipitation forecasts over complex terrain, high-resolution data and advanced DA techniques like LETKF are necessary, as they greatly improve snowfall prediction accuracy.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"314 ","pages":"Article 107804"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524005866","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study compares two data assimilation (DA) methods, the Local Ensemble Transform Kalman Filter (LETKF) and three-dimensional variational analysis (3DVAR), in the assimilation of high-resolution three-dimensional remote sensing data. Different observation operators are applied to each DA method to reflect its specific characteristics and to provide best analysis for precipitation forecast over complex terrain. Since radial velocity has a linear relationship with wind components, it applies relatively easily to both DA methods. However, reflectivity has a nonlinear relationship with model state variables and LETKF applies direct DA, while 3DVAR uses indirect DA. A detailed analysis of two specific snowfall cases using ICE-POP 2018 observational data reveals significant differences in wind field changes. In 3DVAR, strong convergence on the windward side and the rapid growth of water vapor into hydrometeors during the forecast period lead to an overestimation of precipitation. In contrast, LETKF improves the simulation of airflow over mountains and enhances precipitation accuracy, attributed to the background error covariance matrix and observation operator. For accurate winter precipitation forecasts over complex terrain, high-resolution data and advanced DA techniques like LETKF are necessary, as they greatly improve snowfall prediction accuracy.
雷达数据同化系统在2018年ICE-POP期间降雪案例中的相互比较
本研究比较了高分辨率三维遥感数据同化中的两种数据同化(DA)方法,即局部集合变换卡尔曼滤波(LETKF)和三维变分分析(3DVAR)。每种数据同化方法都采用不同的观测算子,以反映其具体特点,并为复杂地形上的降水预报提供最佳分析。由于径向速度与风分量呈线性关系,因此相对容易应用于两种数据分析方法。然而,反射率与模型状态变量之间存在非线性关系,因此 LETKF 采用直接数据分析方法,而 3DVAR 则采用间接数据分析方法。利用 ICE-POP 2018 观测数据对两个具体降雪案例进行的详细分析显示,风场变化存在显著差异。在 3DVAR 中,迎风面的强辐合和预报期间水汽快速增长为水气,导致降水被高估。相比之下,LETKF 由于采用了背景误差协方差矩阵和观测算子,改进了对山区气流的模拟,提高了降水的准确性。要准确预报复杂地形上的冬季降水,高分辨率数据和 LETKF 等先进的数据分析技术是必要的,因为它们能大大提高降雪预报的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信